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Abstract Producing a comprehensive overview of the

chemical content of biologically-derived material is a major

challenge. Apart from ensuring adequate metabolome cov-

erage and issues of instrument dynamic range, mass resolution

and sensitivity, there are major technical difficulties associ-

ated with data pre-processing and signal identification when

attempting large scale, high-throughput experimentation. To

address these factors direct infusion or flow infusion electro-

spray mass spectrometry has been finding utility as a high

throughput metabolite fingerprinting tool. With little sample

pre-treatment, no chromatography and instrument cycle times

of less than 5 min it is feasible to analyse more than 1,000

samples per week. Data pre-processing is limited to aligning

extracted mass spectra and mass-intensity matrices are gen-

erally ready in a working day for a month’s worth of data

mining and hypothesis generation. ESI-MS fingerprinting has

remained rather qualitative by nature and as such ion sup-

pression does not generally compromise data information

content as originally suggested when the methodology was

first introduced. This review will describe how the quality of

data has improved through use of nano-flow infusion and

mass-windowing approaches, particularly when using high

resolution instruments. The increasingly wider availability of

robust high accurate mass instruments actually promotes ESI-

MS from a merely fingerprinting tool to the ranks of metab-

olite profiling and combined with MS/MS capabilities of

hybrid instruments improved structural information is avail-

able concurrently. We summarise current applications in a

wide range of fields where ESI-MS fingerprinting has proved

to be an excellent tool for ‘‘first pass’’ metabolome analysis of

complex biological samples. The final part of the review

describes a typical workflow with reference to recently pub-

lished data to emphasise key aspects of overall experimental

design.
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Abbreviations

amu Atomic mass unit

Da Dalton

MS Mass spectrometry

m/z Mass-to-charge ratio

DIMS Direct infusion MS

FIE-MS Flow injection electrospray-ionisation MS

Q-TOF Quadrupole-time-of-flight

FT-ICR-MS Fourier transform ion cyclotron resonance

MS

7 T 7 Tesla, strength of magnet

LC Liquid chromatography

UHPLC Ultra high pressure/performance liquid

chromatography

GC Gas chromatography

SIM Single ion monitoring

DF Discriminant function

LDA Linear discriminant analysis

PCA Principal components analysis

AUC Area under the receiver/operator curve

QC Quality control

MEDE Metabolomics to characterize dietary

exposure (FSA-funded project)
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MZedDB Database: tools for the annotation of high

resolution MS metabolomics data

1 Introduction

Although, no single analytical platform can offer a fully

comprehensive survey of the chemical diversity represent-

ing the metabolome, continuous improvements in mass

spectrometry (MS) instrumentation have allowed develop-

ment of relatively standardised metabolite profiling or fin-

gerprinting procedures (e.g. Dunn 2008; Saito and Matsuda

2010; Koek et al. 2011). A fundamental principle of MS is

the representation of metabolite features in any biological

matrix by measurement of the spectrum of signals reflecting

the mass to charge ratios (m/z) of their ionisation products.

Traditional approaches for assaying metabolite content by

mass spectrometry involve the use of liquid (LC–MS) or gas

(GC–MS) chromatography to first attempt to separate

metabolites before detection, thus generating quantitative or

semi-quantitative information on individual metabolites

(e.g. Lisec et al. 2006; De Vos et al. 2007). These metabolite

‘profiling’ methods demand careful control over the chro-

matographic process to ensure reproducibility and require

significant time, effort and expertise for data pre-processing

in order to deconvolve, align and annotate peaks correctly.

Unfortunately, any chromatography column matrix will

undergo gradual detoriation with repetative use, resulting in

significant changes in data characteristics after a period of

constant operation in larger ([200 samples) profiling

experiments. An alternative approach to capture information

relating to total metabolite content is to develop a spectro-

metric ‘fingerprint’ without recourse to any chromato-

graphic separation (e.g. Smedsgaard and Frisvad 1996;

Goodacre et al. 2002; Aharoni et al. 2002; Dunn et al. 2005a;

Southam et al. 2007; Koulman et al. 2007; Beckmann et al.

2008; Madalinski et al. 2008; Fuhrer et al. 2011). The lack of

a chromatography step before sample ionisation has a great

influence on both experimental design and outcomes. For

example, the absence of a ‘peak’ finding or ‘feature’ align-

ment step greatly simplifies data pre-processing approaches

when compared to the complexity of converting raw data

from hyphenated mass spectrometry experiments (e.g. LC–

MS and GC–MS) into useful output.

Electrospray ionisation (ESI) is the most common

method used for ionisation in the generation of mass

spectrometric metabolite fingerprints (ESI-MS). During the

electrospray process ionization is accomplished by the loss

or gain of a proton, or other adducts, and charged analyte

molecules can carry either single or multiple charges.

Although ideally suited to more polar chemicals, even

molecules that do not have acidic or basic groups can be

charged through the formation of adducts with various ions

such as Cl- ions in negative ion mode or commonly K? or

Na? in positive ion mode. The formation of such adducts is

highly dependent on the salt content of the crude sample

matrix. As such minimal (usually no) fragmentation is

produced during electrospray and a protonated (?ve ion

data) or de-protonated (-ve ion data) analyte is often

referred to as the ‘‘pseudo molecular ion’’ of the parent

molecule (Gorlach and Richmond 1999). This property

means that LC–MS analytical approaches using electro-

spray ionisation are able to directly predict m/z signal

putative identity based on measured mass. The lack of

extensive molecular fragmentation during electrospray

ionisation is considered to result in reproducible ionisation

patterns when extracts representing similar biological

matrices are analysed and offers an experimental robust-

ness suitable for larger scale investigations (e.g. Smedsg-

aard and Frisvad 1996; Catchpole et al. 2005; Dunn et al.

2005b; Parker et al. 2009; Beckmann et al. 2010; Scott

et al. 2010; Ward et al. 2010; Fuhrer et al. 2011). ESI-MS

fingerprinting methodology can be adapted to analyse both

polar and lipophilic extracts in both positive and negative

ionisation modes to provide comprehensive coverage of a

wide range of chemistries. Relatively recently the use

of ambient ionisation techniques based on variants of

desorption electrospray ionisation (DESI) or extractive

electrospray ionisation (EESI) have extended the utility of

mass spectrometry fingerprinting to direct analysis of

complex solid materials or liquid aerosols without the need

for sample pre-treatment or extraction (e.g. Chen Wort-

mann and Zenobi 2007; Li et al. 2009, 2011; Wu et al.

2010; Chen Hu and Zhang 2010; Hu et al. 2011; Wang

et al. 2011; Gu et al. 2010). A detailed description of these

methods is out of the scope of the present article.

ESI-MS fingerprint data generated at high mass resolu-

tion can be analysed directly to both discover AND

annotate metabolite signals explanatory of a biological

difference between specific sample classes. Alternatively,

many applications have used a hierarchical approach in

which ESI-MS fingerprinting at nominal mass is followed

by the targeted analysis of specific m/z signals by higher

resolution methods. Different instrument configurations are

more suited to these different analytical approaches.

Nominal mass metabolite fingerprinting is often utilised

in situations where there is a need for a high-throughput

screening method with comprehensive coverage of

metabolite diversity that allows sample classification or

discrimination according to their origin or biological rele-

vance, without actually structurally identifying and quan-

tifying individual metabolites (for overview see Beckmann

et al. 2008; Enot et al. 2008). With an analytical cycle time

of typically 3–5 min per sample, coupled with the relative
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simplicity of data pre-processing and robustness of the

data, it is considered that nominal mass ESI-MS finger-

printing in particular is an ideal choice for high throughput

‘first pass’ analysis.

A survey of publications reporting the use of non-tar-

geted flow infusion ESI-MS fingerprinting (see Table 1

later) indicate clearly that this technology has been used as

a credible high throughput alternative to much more

laborious and time consuming analytical procedures

employing prior chromatographic separation of analytes. In

several cases in which a direct comparison was made, flow

infusion ESI-MS fingerprinting has proved equally as

informative as for example HPLC–MS analysis (Zahn et al.

2001; Han et al. 2008a; Lin et al. 2010) or GC–MS pro-

filing (Catchpole et al. 2005; Beckmann et al. 2007; Mas

et al. 2007; Pope et al. 2007; Lloyd et al. 2011c) or NMR

fingerprinting (Scott et al. 2010; Ward et al. 2010).

The purpose of the present article is to firstly review the

development of ESI-MS fingerprinting technology and

summarise applications to date. Key technical and experi-

mental design considerations which impact on the utility of

ESI-MS fingerprinting will be explained with reference to

recent data generated on a specific instrument following a

typical workflow.

2 Choice of instrumentation for ESI-MS fingerprinting

2.1 General principles of ESI-MS fingerprint data

generation

A key aspect of any non-targeted electrospray ionisation mass

spectrometry (ESI-MS) fingerprinting method is the need to

obtain a stable spray resulting in a sustained ion current

throughout data acquisition. Early reports of metabolite fin-

gerprinting used a ‘direct injection’ (DI-MS) approach uti-

lising a syringe pump, or similar device, to constantly

introduce the entire sample into the mass spectrometer (e.g.

Goodacre et al. 2002). The majority of more recent reports

have adopted the use of a ‘flow injection’ or ‘flow infusion’

strategy (FIE-MS) in which the sample is either introduced in

an LC–MS running solvent as a ‘plug flow’ (Fig. 1a) in an

short (2–3 min) HPLC run or introduced continuously using

bespoke nano-infusion devices, such as the chip-based

NanoMateTM (e.g. Boernsen et al. 2005; Southam et al. 2007;

Beckmann et al. 2008; Fuhrer et al. 2011; Zamfir et al. 2005).

Since atmospheric pressure chemical ionisation (APCI) has

been used only in a few cases (e.g. Gray and Heath 2005) we

will continue using the generic term ‘ESI-MS’ fingerprinting

in this article to describe electrospray ionisation experiments

using either a syringe pump (DI-MS), HPLC/nano-LC sys-

tems (flow infusion experiments or analysis, FIE-MS, FIA-

MS) or chip-based infusion approaches.

Data are often collected as a full width spectrum in

centroid mode and during data pre-processing an average

chromatogram is calculated from scans within the central

portion of the infusion/injection peak. A delay of a couple

of minutes before the next sample is infused into the sol-

vent stream can avoid any ‘carry over’ between consecu-

tive injections and provides a region of signal ‘noise’ that

can be used for background subtraction (Windig et al.

1996). Generally there is scope to use both positive and

negative ionisation modes either independently or using

alternate scans, depending on instrumentation and solvent

or mobile phase preferences. As a default all instrumen-

tation is generally capable of acquiring data to allow bin-

ning ions into nominal mass bins differing by 1 atomic

mass unit (amu) within the range m/z 50 to m/z 1,000

(although many instruments have higher mass ranges) and

thus a typical ‘full spectrum’ metabolite fingerprint will

contain approaching 1,000 data features. In the absence of

analyte pre-separation by chromatography processed ESI-

MS fingerprint data can be considered essentially 2

dimensional (mass 9 intensity), differing only in the way

in which the sample is introduced to the ionisation chamber

(Fig. 1b). With two ionisation modes (?ve and -ve ion)

data dimensionality in nominal mass ESI-MS fingerprint-

ing often approaches 2,000 mass features.

2.2 Instrumentation and mass resolution

Researchers using LC–MS analytical methods will always

seek to optimise the balance between mass resolution and

sensitivity to maximise the information content of ESI-MS

data without compromising reproducibility. Equipment

used for ESI-MS fingerprinting combine single or hybrid

quadrupole, time-of-flight, ion trap, Orbitrap and FT-ICR-

MS technology, all of which offer different capabilities in

terms of mass resolution and accuracy, dynamic range,

sensitivity and general robustness (see Gross 2004). The

choice of instrument has a major impact on experimental

design.

Single quadrupole instruments and ion traps with quadru-

pole (Q) detectors are extremely robust and offer rapid scan-

ning over large m/z ranges (see Gross 2004 for an overview).

Ion traps, with an inherent capacity for ion storage, have the

advantage that further successive fragmentation of selected

ions (MSn experiments) could provide additional structural

information. Although mass resolution is a valuable charac-

teristic of instruments used to acquire nominal mass ESI-MS

fingerprint data, the ability to capture large numbers of ions in

constant sized ‘packages’ in each scan is also sometimes

considered to be an advantage and linear ion trap instruments

with automatic gain control (AGC) functions are particularly

well suited to address this issue (March 1997). In both single

quadrupole and ion trap instruments ESI-MS fingerprints can
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Table 1 Overview of ESI-MS based publications

Technique Matrix/application Purpose Instrument (ESI-MS) Manufacturer Reference

Nominal mass/low resolution

FIE-MS Yeast mutants Classification LCT Waters Allen et al. (2003)

FIE-MS Yeast and antifungal substances Classification and MoA LCT Waters Allen et al. (2004)

DIMS Olive oil, adulteration Classification LCQ-Fleet Thermo Alves et al. (2010)

DIMS Humic acid fractions—soils/coal Classification 3200 Q Trap ABSciex Baigorri et al.

(2008)

FIE-MS Potato cultivars Classification and feature

selection

LTQ Thermo Beckmann et al.

(2007)

FIE-MS General application Generic protocol LTQ/LCT Thermo/

Waters

Beckmann et al.

(2008)

FIE-MS Dog breeds Classification and feature

selection

LTQ Thermo Beckmann et al.

(2010)

FIE-MS Potato substantial equivalence Classification and feature

selection

LTQ/LCT Thermo/

Waters

Catchpole et al.

(2005)

DIMS Biodiesel Quality assessment Q-ToF Waters Catharino et al.

(2007)

FIE-MS Grapefruit Quality assessment LCQ-Classic and

ToF-MS Unique

Thermo Chen et al. (2010b)

FIE-MS Scutellaria lateriflora skullcap-based

dietary supplement

Quality assessment LCQ-Classic Thermo Chen et al. (2010c)

FIE-MS Arabidopsis and potato Data analysis strategies LTQ Thermo Enot et al. (2006)

FIE-MS Grape anthocyanins Classification and feature

selection

LCQ Thermo Favretto and

Flamini (2000)

FIE-MS Catharanthus roseus extracts

quantification

Targeted analysis, screening LCQ Thermo Favretto et al.

(2001)

DIMS Escherichia coli and Bacillus cereus Classification LCT Waters Goodacre et al.

(1999)

DIMS Olive oil adulteration Classification LCT Waters Goodacre et al.

(2002)

DIMS Pharbitis nil leaf sap Classification LCT Waters Goodacre et al.

(2003)

FIE-MS Arabidopsis thaliana wound

response

Classification and feature

selection

LCT Waters Grata et al. (2007)

FIE-MS Corn stover process control Process control assessment API 3200 Triple

Quad

ABSciex Helm et al. (2010)

FIE-MS Actinomycetes secondary metabolite

production

Methodology assessment Navigator Thermo Higgs et al. (2001)

FIE-MS Arabidopsis thaliana infected with

Botrytis cinerea
Classification LCT Waters Johnson et al.

(2007)

FIE-MS Escherichia coli Classification LCT Waters Kaderbhai et al.

(2003)

FIE-MS Lolium perenne infected with

Neotyphodium lolii
Classification and feature

selection

LTQ, MS3 Thermo Koulman et al.

(2007)

DIMS Lolium perenne QTL Classification and feature

selection

LTQ, MS3 Thermo Koulman et al.

(2009)

FIE-MS Arabidopsis thaliana infected with

Botrytis cinerea
Classification and feature

selection

LCT Waters Lloyd et al. (2011a)

DIMS Broccoli, two cultivars, seven

treatments

Classification and feature

selection

1100 LC/MSD SL

Quad

Agilent Luthria et al.

(2008)

DIMS Plant extracts, dietary supplements Classification and feature

selection

1100 LC/MSD Trap Agilent Mattoli et al.

(2011)

DIMS Ginkgo biloba Methodology assessment HP 5989A Agilent Mauri et al. (1999)

DIMS Medical plant extract screening Bioactive compounds HP 5989A Agilent Mauri and Pietta

(2000a)
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Table 1 continued

Technique Matrix/application Purpose Instrument (ESI-MS) Manufacturer Reference

DIMS Hypericum perforatum L.

(St. John’s Wort)

Methodology assessment HP 5989A Agilent Mauri and Pietta

(2000b)

DIMS Berry fruits, polyphenols Classification LCQ-DECA Thermo McDougall et al.

(2008)

FIE-MS Brachypodium 9 rice blast infection Classification and feature

selection

LTQ Thermo Parker et al. (2008)

DIMS Catharanthus roseus anthocyanins Targeted analysis, screening LCQ, MS/MS Thermo Piovan et al. (1998)

DIMS Hypericum elodes Targeted analysis, screening LCQ, MS/MS Thermo Piovan et al. (2004)

DIMS Yeast Classification Q-ToF Waters Pope et al. (2007)

DIMS Wine aging Classification and feature

selection

Q-ToF Waters Sawaya et al.

(2011)

FIE-MS Arabidopsis thaliana genotypes/

mutants

Classification and feature

selection

LCT Waters Scott et al. (2010)

DIMS Bacillus and Brevibacillus strains Classification LCT Waters Vaidyanathan et al.

(2001)

DIMS Bacterial species Classification Q-ToF Waters Vaidyanathan et al.

(2002)

Hierarchical: low plus ultra-high resolution

FIE-MS Human urine and diet assessment Classification and feature

selection

LTQ, LTQ-FT-Ultra Thermo Favé et al. (2011)

FIE-MS Human urine: dietary biomarker Biomarkers of habitual citrus

fruit consumption

LTQ, LTQ-FT-Ultra Thermo Lloyd et al.

(2011b)

FIE-MS Human urine: dietary biomarker Biomarkers of specific food

consumption

LTQ, LTQ-FT-Ultra Thermo Lloyd et al. (2011c)

FIE-MS Brachypodium infected with rice

blast

Classification and feature

selection

LTQ, LTQ-FT-Ultra Thermo Parker et al. (2009)

FIE-MS Arabidopsis infected with

Pseudomonas syringae
Classification and feature

selection

LTQ, LTQ-FT-Ultra Thermo Ward et al. (2010)

High resolution

DIMS Brachypodium distachyon infection

with rice blast

Classification and feature

selection

LCT and Q-ToF Waters Allwood et al.

(2006)

DIMS Yeast Specific protocol Quattro II Waters Castrillo et al.

(2003)

DIMS Arabidopsis lyrata Classification and feature

selection

LCT Waters Davey et al. (2008)

DIMS Tomato leaves Methodology assessment LCT Waters Dunn et al. (2005a)

FIE-MS Escherichia coli Methodology assessment 6250 Q-ToF Agilent Fuhrer et al. (2011)

FIE-MS Yeast Classification and feature

selection

Q-ToF Waters Hojer-Pedersen

et al. (2008)

DIMS Human serum Biomarker for kidney cancer MicrOToF-Q II Bruker Lin et al. (2010)

DIMS Human plasma Biomarker for lung cancer MicrOToF-Q Bruker Lokhov et al.

(2012)

FIE-MS Yeast mutants Classification and feature

selection

1100 LC/MSD Trap Agilent Mas et al. (2007)

DIMS Tomato leaves, genetics Classification and feature

selection

LCT Waters Overy et al. (2005)

FIE-MS Penicillium Classification and feature

selection

Q-ToF Waters Smedsgaard et al.

(2004)

FIE-MS Fungal cultures Classification and feature

selection

TRIO 2000 Q Thermo Smedsgaard and

Frisvad (1996)

FIE-MS Penicillium screen Classification TRIO 2000 Q Thermo Smedsgaard and

Frisvad (1997)
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Table 1 continued

Technique Matrix/application Purpose Instrument (ESI-MS) Manufacturer Reference

FIE-MS Scutellaria lateriflora skullcap-based

dietary supplement

Quality assessment LCQ-Classic Thermo Sun and Chen

(2011)

FIE-MS Plasma/tissue, mouse model Biomarker for

hypercholesterolemia

LC/MSD ToF Agilent Yang et al. (2009)

FIE-MS Coumarins in traditional Chinese

medicine

Targeted analysis, screening Q-ToF Ultima Waters Yue et al. (2011)

Ultra high resolution

DIMS Strawberry, ripening Classification and feature

selection

Apex III 7T Bruker Aharoni et al.

(2002)

DIMS Salmonella growth in bile Feature selection Apex Qe 12T Bruker Antunes et al.

(2011a)

DIMS Salmonella infection (mouse model) Feature selection Apex Qe 12T Bruker Antunes et al.

(2011b)

DIMS Alcohol toxicity, liver (mouse

model)

Classification and feature

selection

Apex Qe 12T Bruker Bradford et al.

(2008)

DIMS Wine discrimination Quality assessment FT-ICR-MS 9.4T Custombuild Cooper and

Marshall (2001)

DIMS Dissolved organic matter (DOM) Environmental analysis Apex Q 7T Bruker Dittmar and Koch

(2006)

DIMS Nuts Compound identification Apex II 7T Bruker Fard et al. (2003)

DIMS Escherichia coli P450 from Bacillus
subtilis

Substrate screening LTQ-FT-Ultra 7T Thermo Furuya et al. (2008)

NFMS Arabidopsis, metabolome isotope

labeling

Methodology assessment LTQ-FT-Ultra 7T Thermo Giavalisco et al.

(2008)

DIMS Wine and barrel oak-wood Classification and feature

selection

Apex Qe 12T Bruker Gougeon et al.

(2009)

DIMS Arabidopsis thaliana cold tolerance Classification and feature

selection

Apex III 7T (ESI and

APCI)

Bruker Gray and Heath

(2005)

DIMS Human plasma and mouse serum Quantification approach Apex Qe 12T Bruker Han et al. (2008a)

NFMS Mouse tissue, lipidomics Methodology assessment TSQ ultra plus Thermo Han et al. (2008b)

DIMS Rat urine, toxicology Biomarker for

phospholipidosis

FT-ICR-MS 7T IonSpec Hasegawa et al.

(2007)

DIMS Rat urine, toxicology Biomarker for drug-induced

toxicity

FT-ICR-MS 7T IonSpec Hasegawa et al.

(2010)

DIMS Arabidopsis thaliana N,S-stress Functional genomics

approach

Apex III 7T Bruker Hirai et al. (2004)

NFMS Orthotopic liver transplantation Methodology assessment LTQ-FT-Ultra 7T Thermo Hrydziuszko et al.

(2010)

DIMS Human faecal water Biomarker of Crohn’s

Disease

Apex Qe 12T Bruker Jansson et al.

(2009)

DIMS Arabidopsis P450-dependent fatty

acid hydroxylation

Compound identification FT-ICR-MS 7T

Explorer

IonSpec Kai et al. (2009)

DIMS DOM and biofilm reactor Process control assessment FT-ICR-MS 9.4T Custombuild Kim et al. (2006)

DIMS DOM and fulvic acids Classification FT-ICR-MS 9.4T Custombuild Kujawinski et al.

(2004)

DIMS Champagne wine and aerosols Classification Apex Qe 12T Bruker Liger-Belair et al.

(2009)

NFMS Human plasma Biomarker for insulin

sensitivity

Apex Qe 12T Bruker Lucio et al. (2010)

FIE-MS Yeast, Cd treatment Classification & feature

selection

LTQ-Orbitrap Thermo Madalinski et al.

(2008)

DIMS DOM and other natural organic

matter samples

Environmental analysis LTQ-FT-Ultra 7T Thermo Minor et al. (2012)
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be regarded as simplified images of total sample composition

in that the measured variables [mass to charge (m/z) ratios] are

compiled by integrating the levels of more than one metabolite

at a mass resolution of 1 amu. In some types of extract it will

not be uncommon for certain mass bins to contain upwards of

10–15 signals derived from near-isobaric or actually isobaric

(e.g. hexose sugars) molecular species. Nominal mass data

matrices are generally both extremely reproducible and very

quick to generate. From a pragmatic perspective, non-tar-

geted, nominal mass ESI-MS fingerprinting also has the

advantage that any instrument in any laboratory should be able

to replicate any measurements thus possibly providing

extended scope for future data integration (Beckmann et al.

2007; Enot et al. 2007). To accomplish this objective the data

analysis strategy is based on the measure of relative ratios of

m/z-signals in each fingerprint generated from large numbers

of samples in a single analytical batch.

In contrast to nominal mass fingerprinting the use of

instruments fitted with a single time of flight (TOF)

detector capable of higher mass resolution theoretically

Table 1 continued

Technique Matrix/application Purpose Instrument (ESI-MS) Manufacturer Reference

DIMS Mycobacteria Compound identification Apex III 7T Bruker Mougous et al.

(2002)

DIMS Nicotiana tabacum, trangenic Compound identification Apex III 7T Bruker Mungur et al.

(2005)

DIMS Arabidopsis thaliana cells, D/L-

regulation

Compound identification FT-ICR-MS 7T

Explorer

IonSpec Nakamura et al.

(2007)

NFMS Effect of Myriophyllum spicatum on

Microcystis aeruginosa
Classification and feature

selection

FT-ICR-MS KBSI

15T

Custombuild Nam et al. (2008)

DIMS DOM, soil and plant OM Classification and feature

selection

Apex Qe 12T Bruker Ohno et al. (2010)

DIMS KNApSAcK database evaluation Methodology assessment FT-ICR-MS 7T IonSpec Ohta et al. (2007)

DIMS Arabidopsis thaliana phenotypes Methodology assessment FT-ICR-MS 7T

Explorer

IonSpec Oikawa et al.

(2006)

DIMS Aging of Macadamia nut oil Process control assessment BioApex-IIe 7T Bruker Proschogo et al.

(2012)

DIMS Salinibacter ruber, geographic

isolation

Classification Apex Qe 12T Bruker Rossello-Mora

et al. (2008)

DIMS Poppy seed, alkaloids Compound identification Apex III 7T Bruker Schmidt et al.

(2007)

DIMS DOM Environmental analysis Apex Qe 12T Bruker Sleighter and

Hatcher (2008)

DIMS DOM Methodology assessment LTQ-FT-Ultra 7T Thermo Soule et al. (2010)

NFMS Limanda limanda, liver Methodology assessment LTQ-FT-Ultra 7T Thermo Southam et al.

(2007)

DIMS DOM Compound identification FT-ICR-MS 9.4T Custombuild Stenson et al.

(2003)

DIMS Accurate mass and isotope pattern Methodology assessment Apex III 7T Bruker Stoll et al. (2006)

DIMS Escherichia coli, growth conditions Compound identification FT-ICR-MS 7T

Explorer

IonSpec Takahashi et al.

(2008)

NFMS Daphnia magna, Cu-toxicity Classification & feature

selection

LTQ-FT-Ultra 7T Thermo Taylor et al. (2009)

DIMS Arabidopsis pap1-D mutant Functional genomics

approach

Apex III 7T Bruker Tohge et al. (2005)

DIMS DOM Environmental analysis FT-ICR-MS 9.4T Custombuild Tremblay et al.

(2007)

NFMS Chilean wines Classification and feature

selection

LTQ-FT-Ultra 7T Thermo Villagra et al.

(2012)

DIMS Poppy cell culture Functional genomics

approach

Apex III 7T Bruker Zulak et al. (2007)

DIMS direct infusion mass spectrometry, FIE-MS flow injection mass spectrometry, NFMS nano-flow infusion mass spectrometry, DOM
dissolved organic matter
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offers a route to the direct annotation of signals based on

mass estimates. In addition this approach should be capable

of resolving signals from near-isobaric metabolites that

would normally be integrated into a single mass bin in

nominal mass fingerprinting, offering the possibility to

produce more information rich spectra. However, with such

instruments it becomes increasingly difficult to achieve

reproducible data generation as mass resolution demands

are increased. The advent of relatively cheaper and more

robust tandem mass spectrometers, and especially hybrid

Quadrupole-time of flight (Q-TOF) and Quadrupole-ion

trap (Q-trap) instruments (Gross 2004) offered the oppor-

tunity to acquire ESI-MS data more routinely at higher

mass resolutions (see Bino et al. 2004; Dunn et al. 2005a,

2008; Dettmer et al. 2007; Villas-Boas et al. 2005 for

reviews). At m/z 500 a typical performance would be an

average of 10,000 (FWHM) with mass errors between 5

and 10 ppm. Such hybrid instruments are generally con-

structed with quadrupole and TOF mass analysers sepa-

rated by a higher pressure collision cell which can be used

to perform collision induced dissociation (CID) of selected

ions, offering further scope for metabolite identification

through MS/MS experiments. The reason behind the desire

to use accurate mass approaches is clearly an expectation

that the measured mass recorded will be close to the

expected mass of a specific metabolite recorded in a pub-

lically accessible database, and thus mass information

could potentially lead directly to putative annotation of a

signal. Data generation is carried out as for single TOF

instruments but with increasing resolution there is a need

for even more powerful software for data pre-processing to

ensure experimental reproducibility. The rewards in terms

of data dimensionality and reproducibility for continually

improving data-processing approaches are significant. For
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Fig. 1 ESI-MS fingerprint data generation. a Typical plug flow

injection chromatogram of an ESI-MS experiment with a single peak

containing all metabolites in the absence of a chromatographic

column. In the resulting mass spectrum of human urine b the

magnification of ion intensities by factor of 10 at m/z [500 shows a

continuous data stream and therefore mass bin occupancy with

positive intensity values, which is essential for most data analysis

procedures. c Acquisition of ESI-MS data in four mass ranges and ion

intensities in positive ESI-MS ionisation mode generated in a Thermo

LTQ linear ion trap
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example in a recent report using a Q-TOF instrument,

Fuhrer et al. (2011) collecting data in profile mode were

able to detect over 1,500 ions reproducibly at a resolution

averaging 10,000 (FWHM) in the mass range m/z

100–1,000 with an average mass accuracy of 0.001.

However, to achieve this result required the inclusion of a

computationally intensive data processing step based on a

wavelet transformation algorithm in order to exhaustively

identify reproducibly very low intensity ion peaks in mass

spectra. In parallel with the refinement of data pre-pro-

cessing software has been an explosion of software tools

and databases to improve the annotation of ESI-MS signals

based on accurate mass information (e.g. Kind and Fiehn

2006, 2007, 2010; Draper et al. 2009; Ohta et al. 2007;

Iijima et al. 2008; Brown et al. 2009, 2011; Wishart 2009,

2011; Weber and Viant 2010; Rojas-Cherto et al. 2011).

Traditional time-of-flight (TOF) and hybrid Q-TOF

mass analysers could potentially achieve (with internal

calibration) a resolving power as high as 50,000. This level

of resolution however is not sufficient to distinguish

between a large proportion of metabolites of different

elemental composition which remain effectively isobaric at

the maximum mass resolution achievable (Castrillo et al.

2003; Dunn et al. 2005; Overy et al. 2005; Davey et al.

2008; Yang et al. 2009; Sun and Chen 2011). Unfortu-

nately an increase in resolution also is generally accom-

panied by a loss in sensitivity and often precision in mass

accuracy which can lead to problems with data stability and

alignment (for review see Dunn 2008). Although much

data is yet to be published, many of these problems have

recently been resolved in a new generation of LC–MS

instruments which can operate efficiently at 100,000 mass

resolution routinely and provide sub-ppm mass accuracies.

With the advent of ultra-high accuracy mass resolving

analyzers such as the Orbitrap (maximum resolution

*240,000) and Fourier transform ion cyclotron resonance

(FT-ICR) analyzer (resolution potentially in excess of

1,600,000 with 18 T magnets) the problem of precision in

mass accuracy is reduced to sub-ppm errors allowing efficient

prediction of ion elemental formulas (for reviews see Brown

Kruppa and Dasseux 2005; Marshall and Hendrickson 2008;

Junot et al. 2010; Ohta et al. 2010b). Data collection at high

mass resolution effectively improves the number of metabo-

lites to be detected when compared with lower resolution

instruments. In such cases the data may be considered more to

be metabolite ‘profiles’ in which each peak represents a single

chemical entity (Junot et al. 2010; Ohta et al. 2010). It has

however been demonstrated that applying accurate isotopic

pattern calculation on data generated at 3 ppm mass accuracy

could be advantageous to routinely generating 0.1 ppm mass

resolution data over the full mass range on a currently still

hypothetical instrument (Kind and Fiehn 2006; Miura et al.

2010).

In addition to syringe pumps and HPLC delivery sys-

tems all of the above instruments have been operated in

conjunction with chip-based nanospray infusion devices

with great effect to generate ESI-MS fingerprints. One

advantage of such sample delivery systems is the ability to

infuse samples with great stability over long periods of

time (Schultz et al. 2000). With long data acquisition times,

analytical sensitivity and dynamic range can be increased,

making it possible to simultaneously detect hundreds of

compounds in excess of what can be measured in LC–MS

systems (Boernsen et al. 2005; Wickremsinhe et al. 2006).

In most general aspects the structure of processed spectra

generated by FT-MS technology is very similar to that

produced by tandem mass spectrometry using new gener-

ation Q-TOF or Q-Trap instruments. However, the ultra-

high resolution offers additional scope to annotate indi-

vidual m/z signals by comparisons of signals across the

spectrum as the mass accuracy is such that pseudo-parental

ions, isotopes and salt adducts can be recognised by mass

differences with much more confidence (e.g. Aharoni et al.

2002; Stoll et al. 2006; Tautenhahn et al. 2007; Southam

et al. 2007; Giavalisco et al. 2008; Han et al. 2008a;

Madalinski et al. 2008; Takahashi et al. 2008; Draper et al.

2009; Payne et al. 2009; Taylor et al. 2009; Favé et al.

2011; Lloyd et al. 2011c), although care is needed with

interpretation of Fourier artefact peaks (Brown et al. 2009).

3 Technical aspects of ESI-MS data generation

3.1 Dynamic range and sensitivity

In a complex biological extract analytes will be present at a

wide range of concentrations, differing by several orders of

magnitude (Fiehn 2002; Sumner et al. 2003; Bino et al.

2004; Dunn 2008; Scalbert et al. 2009). The dynamic range

of any instrument configuration (i.e. the ratio of the highest

to lowest concentration metabolites detected) needs to be

increased to allow the detection of lower abundance ions.

Compared to single quadrupole instruments linear ion traps

provide an enhanced dynamic range with a reduced low

mass cutoff due to the spatial distribution of the ion cloud

on the linear axis, resulting in an improved sensitivity

(March 1997; Gross 2004). FT-ICR-MS and Orbitrap-MS

instruments potentially offer ultra-high mass accuracy and

resolution, however, a dynamic response across a wide

mass range can only be achieved at the expense of mass

accuracy, since the large numbers of ions entering the ICR

detector induce adverse space-charge effects (Junot et al.

2010; Ohta et al. 2010). Such charge repulsive effects

particularly cause mass calibration problems at higher m/z

values and a reduction in peak resolution efficiency (Zhang

et al. 2005; Oikawa et al. 2006).
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Similar approaches have been used to address the issue

of dynamic range limitations in both high mass accuracy

and nominal mass fingerprinting in which the data has been

collected as a series of overlapping spectra comprising

relatively narrow mass windows followed by ‘stitching’ the

windows together after acquisition (Southam et al. 2007;

Giavalisco et al. 2008; Beckmann et al. 2008, 2010; Parker

et al. 2008, 2009; Scott et al. 2010; Ward et al. 2010; Favé

et al. 2011; Lloyd et al. 2011b, 2011c). For example, in an

optimised approach described by Southam et al. (2007) FT-

ICR-MS data was generated using the selected ion moni-

toring (SIM) mode from m/z 70 to m/z 500, using 21

adjacent SIM windows of 30 m/z each overlapping by

10 m/z. Data gathered in such ‘windows’ can subsequently

by combined (or stitched) together using novel algorithms

(Payne et al. 2009). Using fish liver samples Southam et al.

(2007) showed that compared to wide scan mode the ‘SIM

stitching’ method increased peak detection by a factor of 5

and the mass error decreased by a factor of 4, leading to a

maximum mass error \0.5 ppm. Beckmann et al. (2008)

similarly reported the collection of nominal mass ESI-MS

data in two scan ranges (low: 15–200 m/z; and high:

110–2,000 m/z) to represent the composition of domestic

dog urine (Beckmann et al. 2010) and extracts from path-

ogen-challenged plant leaves (Parker et al. 2008, 2009).

This method was recently extended to collect data over

four scan ranges (m/z 15–110; 100–220; 210–510 m/z;

500–1,200 m/z) in profile mode (Fig. 1c) and has been used

to great effect in a range of studies (Scott et al. 2010; Ward

et al. 2010; Favé et al. 2011; Lloyd et al. 2011b, c). The

data collected in the overlapping mass windows could

either be combined to give a full spectrum from m/z 15 to

1,200 (e.g. see Fig. 1b), or each mass range could be

analysed independently to reduce data dimensionality and

for use in correlation analyses. In most experimental situ-

ations, collecting the data in smaller mass windows

generally improved the modelling characteristics (e.g.

classification sensitivity and specificity metrics) of nominal

mass ESI-MS fingerprint data.

3.2 Signal quantitation using accurate mass profiling

ESI-MS

Measurement of the true concentration of a metabolite in

crude biological samples requires the signal intensities of

the analytes concerned be compared to a calibration curve

made using chemical standards. In any non-targeted met-

abolomics approach quantitation is normally limited to

expression of signal intensities as relative ratios in arbitrary

units (e.g. in relation to total ion current of each sample).

Thus generally ESI-MS fingerprint data have rarely been

considered anything but semi-quantitative with the excep-

tion of a few studies using high accurate mass data

generated using sophisticated signal acquisition procedures

in combination with powerful data pre-processing

algorithms (e.g. Southam et al. 2007; Han et al. 2008;

Madalinski et al. 2008; Fuhrer et al. 2011). As outlined in

the previous section great care is required to optimise the

dynamic range whilst maintaining high levels of both

sensitivity and mass accuracy. As such many signals will

not be represented in the final data after stringent data-pre-

processing. For example using a 12 T FT-ICR mass spec-

trometer Han et al. (2008b) detected 570 ions in an aqueous

plasma extract of human plasma, and an elemental formula

was assigned to 250 of them solely on the basis of accurate

mass measurements with sub-ppm mass errors. Using an

LTQ-Orbitrap instrument although mass spectra in the

range m/z 50–m/z 1,000 derived from yeast cell extracts

contained a few thousand m/z signals only 400 were con-

sidered to be quantifiable (Madalinski et al. 2008). To

qualify as ‘analytically relevant’ a signal had to occur in at

least 60 % of acquisition profiles under identical experi-

mental conditions and have an intensity 3-fold higher than

that of the background noise. More recently, in an attempt

to exploit fully the high resolution and mass accuracy of

TOF-MS Fuhrer et al. (2011) described a high throughput

platform capable of detecting [1,500 reproducible signals

(i.e.[2-fold high than background noise) in both ionisation

modes under conditions where [90 % of chemical stan-

dards showed a linear response when ions where recorded

in profile mode from m/z 50 to m/z 1,000. Interestingly,

between 400 and 800 signals were assigned to ionisation

products of around 200 Escherichia coli metabolites. This

recently reported experiment used samples comprising a

hot water extraction of intact E. coli cells and as such

preferentially measured polar chemicals associated with

central metabolism. It remains to be seen if a similar per-

formance can be demonstrated with more complex

extraction procedures (e.g. solvent mixtures or sample

partitioning through phase separation), particularly with

crude sample types likely to contain complex membrane

components or fragmented biological polymers.

3.3 ESI-MS fingerprint data processing and quality

control

Concepts in quality control (QC) in LC–MS experiments are

discussed extensively by Dunn et al. (2011) and will not be

considered in detail in the present review. Randomizing

sample classes in the run sequence is mandatory to avoid bias

due to the position of samples within the injection order. The

inclusion of a ‘mastermix’ QC solution made by combining an

aliquot of all (or a representative sub-set of) samples used in

the experiment provides a standardised quality control sample

relevant to the matrix under study (e.g. Beckmann et al. 2007).

In LC–MS procedures generating quantitative data these QC
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samples can be used to monitor instrument response

throughout the analysis of a large batch of samples to calculate

technical precision within each block, and these QCs can also

be used to perform local corrections thereby compensating for

instrument drift (e.g. Dunn et al. 2011). In instances where

ESI-MS fingerprinting is used to generate a comprehensive

metabolite data set then such QC measures are essential for

data normalisation, especially when samples are analysed in

large batches (e.g. Fuhrer et al. 2011). In all types of ESI-MS

fingerprinting experiments, the infusion of several QC sam-

ples at the beginning of a batch of samples is advisable to

‘condition’ the LC–MS system after any system maintenance

following the analysis of a large sample batch (see Dunn et al.

2011). Signal variance appears apparently much greater for

m/z typically exhibiting higher intensities when all signals are

measured on the same scale in the raw data. The logarithmic

transformation of signal intensity can help alleviate the

dependency of the variance with the intensity because it

makes multiplicative models additive (van den Berg et al.

2006) and is often a consensus step in many metabolomics

applications.

Further inter-spectrum sources of variability are often

present in ESI-MS fingerprint data that come mainly from

different sample concentrations, loss of sensitivity of the

detector over time or degradation of certain samples. A range

of methods are routinely applied in mass spectrometry to

normalize fingerprint data based on the use of one or more

internal standards of ‘known’ concentration. This is not often

possible in direct infusion ESI-MS fingerprint data which are

generally not quantitative and so the most widely used solu-

tion consists of a so-called global normalization by rescaling

each measurement within a spectrum by a constant factor,

such as the sum of all the spectra intensities (TIC). Like any

LC–MS experimental strategy ESI-MS fingerprint data

quality can also be effected by increasing contamination of the

ionisation source that gradually reduces ionisation efficiency;

this may be a particular problem with crude extracts from

biological matrices containing large amount of proteins or

complex carbohydrates. Additional cumulative effects on data

quality many result from the loss of ion transmission effi-

ciency and a gradual deterioration of detector sensitivity at set

values or the absence of regular calibration and tuning which

is a necessity in high and ultra-high resolution mass spec-

trometry. For such reasons ESI-MS fingerprinting experi-

ments are generally carried out in batches of carefully

randomized samples during periods of adequate instrument

performance and specific ‘corrections’ applied post-data

acquisition to align batches of data from the same experiment.

3.4 Ion suppression and ESI-MS fingerprinting

Ion suppression is a well described and often unpredictable

effect described in many experimental contexts when

quantitative LC–MS data are generated (e.g. King et al.

2000; Annesley 2003; Liu et al. 2010). It can be thought of

as a ‘matrix effect’ resulting from the presence of co-eluting

compounds which change the efficiency of ESI-MS droplet

formation/evaporation, cause precipitation in the LC mobile

phase, or cause charge neutralisation of an effected analyte

in the gas phase (King et al. 2000). Ion suppression is

manifestly a potential problem in LC–MS as it can reduce

signal intensity from a sub-set of metabolites eluting at

specific retention times in the chromatogram, thus invali-

dating any strictly quantitative measurement (Antignac

et al. 2005). There were occasional suggestions early in the

development of metabolomics technology which perhaps

gave the impression that the phenomenon of ion suppres-

sion might be more of a problem with flow infusion ESI-MS

fingerprinting (e.g. Hall et al. 2002). However it is difficult

to find any evidence that ion suppression has more of a

detrimental effect on flow infusion fingerprinting than in

LC–MS methods using chromatography to separate

metabolites. Indeed, when examined in detail, studies by

several groups all showed that the relationship between

signal intensity and metabolite concentration was generally

linear at higher sample dilutions (Dunn et al. 2005b; Sou-

tham et al. 2007; Madalinski et al. 2008; Han et al. 2008;

Fuhrer et al. 2011). In addition, the use of long infusion

times and slower sample delivery rates, achievable using

NanoMate technology (Schultz et al. 2000), in combination

with more dilute sample extracts, has been reported to

reduce ion suppression effects greatly. When direct infusion

results were compared with LC–MS analyses of the same

extract reproducibility of the observed metabolic fingerprint

was significantly improved (Boernsen et al. 2005; Southam

et al. 2007). From a practical perspective the impact of ion

suppression effects are generally minimised in ESI-MS

fingerprinting by running dilutions of any new biological

matrix to optimise data quality by ensuring that there is a

good spread of signal intensities across the whole spectrum

(Dunn et al. 2008; Beckmann et al. 2008; Madalinski et al.

2008; Fuhrer et al. 2011). However, even after such opti-

misation it is not uncommon for an ESI-MS fingerprint to

still be dominated by signals derived from an abundant

metabolite class which easily acquires charge. However, as

all analytes within a flow infusion electrospray sample

experience the ionisation process in an identical chemical

background then any such matrix effects should at least be

imposed uniformly in all samples derived from similar

types of tissues (Fiehn 2002). Furthermore, high through-

put of many biological replicates actually allows discrimi-

nation of classes based on very small but nevertheless

statistically significant changes. Therefore, subtle, but

consistent changes in the abundance of even potentially

suppressed ions can be extracted by powerful data mining

strategies.
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4 Applications of ESI-MS fingerprinting

ESI-MS fingerprinting has gained popularity using a range

of instrumentation applied to an ever increasing number

of biological problems (Table 1) since Smedsgaard and

Frisvad (1996, 1997) first described the use of direct

infusion ESI-MS to carry out taxonomic studies in crude

extracts of filamentous fungi producing potential bioactive

metabolites. Over the past decade a major application of

ESI-MS fingerprinting methodology has centred on clas-

sification experiments using multivariate data analysis

tools (e.g. Broadhurst and Kell 2006; Enot et al. 2008).

These include the pre-screening of samples to confirm the

‘discreteness’ of sample classification to ensure, for

example, that data are not artificially partitioned as a result

of analytical batches, sample collection sites or unforeseen

environmental or genotypic influences (Beckmann et al.

2008). This can be of particular benefit in epidemiological

studies involving ‘free living’ humans where metabolome

differences derived from unrecorded experimental factors

orthogonal to the biological question under consideration

(e.g. drug intake, inflammation/disease status, exercise,

genotype, colonic microflora differences, diet) can con-

found data analysis (e.g. Scalbert et al. 2009; Favé et al.

2011). Similarly, discovery of sample classification or

sample outlier problems by ‘first pass’ metabolite finger-

printing approaches at an early stage of an analytical pro-

cess can avoid confounding problems later in an

experimental ‘pipeline’, particularly when modelling will

ultimately depend on data with very high dimensionality

derived from much more expensive and time consuming

quantitative LC–MS or GC–MS profiling methods. In

addition to sample classification ESI-MS fingerprint data

has been increasingly interrogated by a range of powerful

feature selection methods (e.g. Broadhurst and Kell 2006;

Enot et al. 2008) to provide initial clues to the potential

identity of metabolites ‘explanatory’ of chemical differ-

ences between biological classes. A typical use is to

highlight masses that can be targeted for structural identi-

fication and accurate quantification in follow up analyses

using either hyphenated mass spectrometry (typically

UHPLC-MS) or high mass accuracy fingerprinting meth-

ods. In general, most applications can be distinguished

firstly by the mass resolution capability of the equipment

used and the anticipated utility of ESI-MS data generated in

any metabolomics ‘pipeline’. The following examples will

be used to outline the range of applications reported to date.

4.1 Nominal mass and low resolution ESI-MS

fingerprinting

Using simple mass spectrometers with single quadrupole

detectors, Pietta and co-workers used direct infusion ESI-MS

to characterise medicinal plants and plant resins (Mauri et al.

1999; Mauri and Pietta 2000a, b; Pietta et al. 2002). With

only very modest resolution and limited sensitivity the

nominal mass spectra generated in such experiments were

useful to survey the diversity and relative concentrations of

major potentially bioactive secondary metabolites found in

crude extracts. Flow infusion ESI-MS fingerprinting using

ion trap devices have similarly been used to analyse

medicinal plants (Piovan et al. 1998, 2004; Favretto and

Flamini 2000; Favretto et al. 2001), fruit polyphenol com-

position (McDougall et al. 2008), to confirm the correct

identification of medicinal plants (Chen Lin and Harnly

2010c), to analyse the composition of derived herbal medi-

cines (Sun and Chen 2011), and to phenotype fungal path-

ogen isolates (Lowe et al. 2010). With the advent of ‘first

generation’ commercially available time of flight (TOF)

instruments at the end of the 20th century (Guilhaus et al.

1997) came the first reports of ‘global’ non-targeted, nominal

mass ESI-MS fingerprinting for species and strain dif-

ferentiation in bacteria and yeast (Goodacre et al. 1999;

Vaidyanathan et al. 2001, 2002; Allen et al. 2003, 2004;

Kaderbhai et al. 2003). These publications were followed by

reports of the use of similar methodologies in plant biology,

food and environmental science, largely for sample classi-

fication, diagnostic or quality control purposes. For example

Goodacre et al. (2002) first used direct infusion ESI-MS to

look for evidence of olive oil adulteration and such methods

continue to be used for oil and liquid hydrocarbon fuel

analysis (e.g. Catharino et al. 2007; Alves et al. 2010). Non-

targeted, nominal mass direct infusion ESI-MS fingerprint-

ing similarly has found utility for the characterisation of

herbal dietary supplements (Mattoli et al. 2011), for assess-

ment of agronomic practices on food chemical composition

(Luthria et al. 2008; Chen et al. 2010c) and for an exami-

nation of the wine aging process (Sawaya et al. 2011). In

more fundamental applications involving plants Goodacre

et al. (2003) looked for evidence of chemical signals

involved in photoperiod responses in the vascular tissue

(phloem) of the photoperiod-sensitive plant Pharbitis nil.

Furthermore Catchpole et al. (2005) used flow infusion ESI-

MS to determine whether the metabolome of genetically

modified plants could be considered ‘substantially equiva-

lent’ to that of cultivars developed using traditional plant

breeding methods. In addition the chemical basis of cultivar

classification in potato tubers was found to be associated with

metabolites considered to be precursors of food quality

characteristics (Beckmann et al. 2007). Johnson et al. (2007)

used similar approaches to investigate metabolome differ-

ences between Arabidopsis ethylene signalling mutants

and their wild-type; more recently Lloyd et al. (2011a)

investigated the metabolome changes in similar mutants

following infection with the fungal pathogen Botrytis cine-

rea. Similar ESI-MS fingerprinting approaches revealed that
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phospholipids were major discriminatory metabolites in

responses by Brachypodium distachyon to challenge by

Magnaporthe grisea (Allwood et al. 2006). There are several

reports of non-targeted direct infusion ESI-MS fingerprint-

ing using instruments with a single TOF detector (mass

resolution around 5,000 FWHM (at m/z 200) in which data

has either been processed into bins of narrower mass win-

dows (e.g. 0.2 amu; Davey et al. 2008) or spectra collected in

centroid mode as individual peaks of accurate mass down to

4 decimal places (Dunn et al. 2005b; Overy et al. 2005).

Using such approaches Dunn et al. (2005b) were able to

identify approximately 50 metabolites in a crude extract of

tomato fruit and it was demonstrated that 10 were present at

significantly different levels in two species of tomato and in

some instances explanatory signals were detected that would

have been masked in data binned to 1 amu.

Linear ion trap technology is associated with a general

robustness over long periods of time which has proved

extremely valuable for large scale experiments using nominal

mass fingerprinting (for overview see Beckmann et al. 2008).

This ability to analyse a larger number of samples at a high

throughput was conducive to the generation of sufficient

replicates to allow the efficient use of powerful supervised

machine learning methods (Broadhurst and Kell 2006; Enot

et al. 2008) not only to classify samples but also to run robust

correlation and feature selection procedures. Thus, an

important advance in the field was the use of non-targeted

nominal mass ESI-MS fingerprinting, not only to classify

samples but also to derive preliminary evidence that specific

m/z signals were explanatory of metabolome differences

between different biological classes. For example, there have

been several instances where it has been used to investigate the

biochemical origin of mutant phenotypes in Arabidopsis

thaliana in functional genomics studies (e.g. Enot et al. 2006;

Scott et al. 2010), or to screen for ‘unexpected’ differences in

the metabolome of large populations of genetically modified

potato plants (Enot et al. 2007; Enot Beckmann and Draper

2007. The same analytical strategy has showed particular

utility in situations where the biological systems display

dynamic temporal changes, for example the rapid changes in

the leaf metabolome following challenge of plants by patho-

gens (Allwood et al. 2006; Parker et al. 2008, 2009; Ward et al.

2010). The problem of large levels of uncontrolled variability

in the human urine metabolome from both habitual diet and

individual ‘metabotype’ was similarly overcome by the use of

adequate sample replication using the same technology (Fave

et al. 2011; Lloyd et al. 2011b, c).

4.2 Accurate mass ESI-MS fingerprinting using Q-TOF

and Q-Trap instruments

Non-targeted, flow infusion ESI-MS fingerprinting using

Q-TOF and Q-trap mass spectrometers has been applied to

a range of biological and diagnostic problems over the past

decade. Many reports centred on applications in microbial

strain identification (Lafaye et al. 2005; Smedsgaard et al.

2004; Mas et al. 2007; Pope et al. 2007; Hojer-Pedersen

et al. 2008; Fuhrer et al. 2011), herbal medicine evaluation

(Yue et al. 2011), plant genotyping (Scholz et al. 2004) or

analysis of humic acid extracts (Baigorri et al. 2008)

similar to those undertaken previously by nominal mass

fingerprinting. A key difference in some of these reports

from those using nominal mass fingerprinting was the

desire by researchers to achieve putative identification of

de novo explanatory metabolites of interest to the biolog-

ical problem under study directly from the fingerprint data.

More recent publications are witness to the emergence of a

new generation of more robust, higher accuracy TOF

instruments that have allowed researchers to utilise direct

infusion accurate mass ESI-MS fingerprinting for ‘proof of

principle’ and diagnostic uses in clinical studies (e.g. Lin

et al. 2010; Lokhov et al. 2012; Yang et al. 2009; Dunn

et al. 2012) and for systems biology and functional

genomics studies (e.g. Fuhrer et al. 2011).

4.3 ESI-MS fingerprinting at ultra-high mass accuracy

using Fourier transform mass spectrometry

Following a flurry of ‘proof of principal’ papers (e.g.

Cooper and Marshall 2001; Aharoni et al. 2002) there has

been an increasing number of reports of the use of ultra-

high accurate mass fingerprinting in a wide range of

research fields as FT-ICR-MS and Orbitrap-MS instru-

ments have become more robust and widely available.

Aharoni et al. (2002) produced one of the earliest

descriptions of the application of FT-ICR-MS fingerprint-

ing to a biological problem when they characterised in

great detail the chemical composition of the ripening pro-

cess in strawberries. Tohge et al. (2005) used a similar

approach to study the effect of exogenous myb gene

expression in transgenic Arabidopsis plants. Metabolic

phenotyping studies and mechanistic biochemical investi-

gations using flow infusion FT-ICR-MS fingerprinting

have also been reported, using the model functional

genomics plant species, Arabidopsis thaliana particularly

to probe its responses to environmental stimuli and stres-

ses, including mineral nutrition (Hirai et al. 2004), cold

acclimation (Gray and Heath 2005) and light/dark regula-

tion of metabolism (Nakamura et al. 2007). Flow infusion

FT-ICR-MS equally has found utility in the de novo

investigation of both metabolic flux and biochemical

function of enzymes in studies involving both plant and

microorganisms (Schmidt et al. 2007; Zulak et al. 2007;

Furuya et al. 2008; Kai et al. 2009; Oikawa et al. 2006). In

an interesting study Nam et al. (2008) used direct infusion

FT-ICR-MS fingerprinting to look for evidence of the
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excretion of allelopathic chemicals by the aquatic plant

Myriophyllum spicatum during co-existence with the cya-

nobacterium Microcystis aeruginosa.

Data processing, signal annotation success and quan-

tification are improved further in approaches utilising

stable isotopes (Mougous et al. 2002; Han et al. 2008;

Madalinski et al. 2008; Giavalisco et al. 2008). For

example Giavalisco et al. (2008) used extracts from

Arabidopsis grown under conditions that allowed whole

metabolome labelling with 13C CO2. When the 13C

metabolite-derived mass spectrum is compared to that

from plants grown under a 12C atmosphere then all

metabolites of true biological origin will appear in both,

but the 13C-labelled metabolites shifted with respect to its

molecular mass by the number of carbon atoms contained.

One consequence of this is that all natural metabolites

will be present as 12C/13C ‘ion pairs’ and all ‘system’

peaks will only be found in the 12C mass spectrum and

can be removed from any subsequent data analysis.

Madalinski et al. (2008) similarly spiked extracted yeast

samples used for Orbitrap FT-MS analysis with several

different concentrations of extracts of yeast cultures uni-

formly labelled with 15N to explore how to minimise the

matrix effects of the direct infusion ESI-MS process.

With optimal conditions established non-targeted Orbitrap

FT-MS fingerprinting was used to investigate the induc-

tion of the glutathione biosynthesis pathway in yeast

culture challenged with the cadmium. Their data provided

several new insights into the modulation of the sulphur

amino acid pathway in yeast that were not evident in a

prior targeted analysis using chromatographic procedures

(LC–MS).

A pioneering publication by Cooper and Marshall

(2001) first demonstrated the power of direct infusion FT-

ICR-MS for the analysis of complex dietary components by

discriminating five wines without any prior purification

step. Gougeon et al. (2009) used FT-ICR-MS fingerprinting

coupled with multivariate analysis to show that barrel-aged

wines have a ‘metabologeographic signature’ relating to

the forest location from which the wood used to manu-

facture the barrels was originally derived. Around the same

time Liger-Belair et al. (2009) used FT-ICR-MS finger-

printing to reveal large numbers of compounds in aerosols

derived from champagne bubbles and putatively assigned

many signals to compounds with organoleptic properties or

potential to be aroma precursors. Proschogo et al. (2012)

suggested that FT-ICR-MS fingerprinting outperformed

other analytical methods for the investigation of aging of

oils extracted from macadamia nuts. The results were

consistent with current industry measures of rancidity and

showed that different methods of oil extraction and storage

regimes prior to analysis resulted in different levels of

peroxides in the oil that are associated with rancidity.

Flow infusion FT-ICR-MS fingerprinting has been

found to have great utility for the analysis of complex

environmental samples containing botanical residues. For

example, dissolved organic matter (DOM) represents one

the largest and probably the most heterogeneous pools of

reactive carbon on earth. An understanding of specific

mechanisms that add or remove compounds from the DOM

pool has been held back by lack of detailed description of

its molecular constituents. Flow infusion FT-ICR-MS has

now been applied to this problem by characterising DOM

in freshwater (e.g. Kim et al. 2006; Sleighter and Hatcher

2008; Minor et al. 2012) and marine (e.g. Tremblay et al.

2007; Dittmar and Koch 2006) systems providing enor-

mous detail, on the composition of thousands of individual

compounds (Kujawinski et al. 2004; Stenson et al. 2003

and Koch et al. 2005). Characteristic signatures of different

environments have been developed and these findings are

now starting to unravel the complex balance of abiotic and

biotic processes which control DOM composition. Simi-

larly, Ohno et al. (2010) were able to use direct infusion

FT-ICR-MS data to discover molecular signals with scope

for development as markers for different types of soil and

plant-derived biomass. The field of environmental toxi-

cology has also attracted interest in the use of ultrahigh

mass accuracy FT-ICR-MS methods to discover biomark-

ers of pollution stress in indicator organism (Taylor et al.

2009; Rossello-Mora et al. 2008).

From a clinical perspective direct infusion ESI-MS fin-

gerprinting has been use to improve knowledge of early

molecular events occurring upon ischemia/reperfusion

following liver transplantation (Hrydziuszko et al. 2010).

Hasegawa et al. (2010) showed that urinary metabolic

fingerprinting with FT-ICR-MS can be used to detect

biomarkers representative of compounds with different

mechanisms of toxicity which can have benefit at early

stages of drug development. The results of Antunes et al.

(2011a) using FT-ICR-MS fingerprinting suggested that

phospholipids were an important source of carbon and

energy for Salmonella during growth in the laboratory as

well as during gallbladder infections of mice. In other

reports the labelling of cells in culture with 34S has been

used to differentiate sulphated from reduced sulphated

compounds which led to the discovery of several new

sulphated molecules in Mycobacterium species (Mougous

et al. 2002). In a different strategy Han et al. (2008) used

isotopically labelled internal standards to confirm the

identity and quantification of choline in plasma and serum

samples. Further utility of direct infusion FT-ICR-MS

fingerprinting for diagnosis of chronic illnesses as diverse

as liver injury from alcohol (Bradford et al. 2008), drug-

induced phospholipidosis (Hasegawa et al. 2007, insulin

insensitivity Lucio et al. 2010 and Crohn’s disease Jansson

et al. 2009 have also been reported.
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5 Recommendations on integration of ‘first pass’

non-targeted ESI-MS fingerprinting with further

targeted analysis to develop hypotheses

in metabolomics research

To date many published projects have employed an experi-

mental design using a ‘hierarchical’ approach to generate

metabolomics data that initiates with ESI-MS fingerprinting

either to generate initial hypotheses, or to validate or optimise

experimental design (Catchpole et al. 2005; Grata et al. 2007;

Beckmann et al. 2007, 2010; Madalinski et al. 2008; Parker

et al. 2009; Scott et al. 2010; Ward et al. 2010; Lin et al. 2010;

Fuhrer et al. 2011; Favé et al. 2011; Lloyd et al. 2011b, c). For

example, Fuhrer et al. (2011) used direct infusion accurate

mass fingerprinting with a Q-TOF to investigate metabolome

differences in E. coli deletion mutants and then performed

targeted collision induced fragmentation on several abundant

ions of interest and compared spectra to those in an in house

library and the Massbank database. Madalinski et al. (2008)

similarly used an LTQ-Orbitrap to generate direct infusion,

accurate mass ESI-MS fingerprints to first discover metabolite

signals explanatory of cadmium exposure in yeast. Explana-

tory signals were followed up by targeted MSn experiments

using the linear ion trap to develop fragmentation ‘trees’.

Demonstrating that any non-targeted metabolomics

procedure can develop good quality data whilst dealing

with sources of extreme variability is a very important

aspect of method development (Broadhurst and Kell 2006;

Enot et al. 2008) and these mathematical processes should

be adequately reported (Goodacre et al. 2007). It is equally

important that the experimental strategy explicitly identi-

fies potentially explanatory data features that can be easily

investigated further for hypothesis development and bio-

logical validation. In the following sections we will outline

the challenges and make recommendations for method

development and data processing and modelling for pro-

cedures using direct infusion ESI-MS as the primary dis-

covery tool.

5.1 Validating experimental design and sample

overview using nominal mass fingerprinting

5.1.1 Defining an appropriate sample batch size

In several recent papers we have described the use of an

optimised nominal mass, flow infusion ESI-MS fingerprinting

workflow to generate information-rich spectra that are suit-

able for classification and feature selection in experiments

containing large numbers (600 to[2,000) of samples (Fig. 2).

This procedure initiates with the use of a linear ion trap to

perform first pass ESI-MS fingerprinting for sample classifi-

cation and feature selection (Beckmann et al. 2008). The

collection of nominal mass spectra over four scan ranges

(m/z 15–110; 100–220; 210–510 m/z; 500–1,200 m/z) in both

negative ion and positive ion mode has been used to great

effect using extracts derived from tubers, plant leaves, urine

and blood (Scott et al. 2010; Ward et al. 2010; Favé et al. 2011;

Lloyd et al. 2011b, c). A key part of the procedure is a generic

routine to ‘mean-shift’ batches of data as part of our ESI-MS

pre-processing workflow (Enot et al. 2008) which allows

basically data alignment between many batches of hundreds

of samples (Fig. 3). An appropriate number of samples per

batch has to be explored empirically and can depend on

experimental parameters such as ion source geometry and

sample matrix (e.g. 20–30 mammalian serum samples or 240

plant extracts per batch can be reasonable). Batch size might

differ between instruments of different make, but can be easily

determined by principal component analysis (PCA) of quality

control samples in pilot experiments. Aligned data batches can

then be used to construct a large data matrix to allow further

checks on data quality to be performed.

5.1.2 Pre-screening of fingerprint data set prior to feature

selection

A useful first step in any metabolomics study is a pre-

screen of either all, or a representative sub-set of samples,

Sample collection, processing and storage

First pass, non-targeted, nominal mass ESI-MS fingerprinting:

Data pre-processing including: batch correction, normalise to TIC and log10 transform

Targeted FT-ICR-MS analysis of explanatory nominal mass bins

Validation and structure elucidation with MSn experiments and  targeted 
LC-MS or GC-MS, comparing to chemical standards and known spectra

Hierarchical cluster analysis and mass difference calculations to identify 
potential relationships between top ranked nominal mass signals

Validate classification robustness: Data modeling using supervised methods in 
FIEmspro workflow quantifying sensitivity and specificity performance

Data overview and QC: Screen for outlying individuals/samples, for unexpected data 
partitioning and class grouping  using PCA and LC-LDA in FIEmspro workflow

Identify and rank explanatory nominal mass bins: using Random Forest

Putative annotation explanatory accurate masses using MZedDB

Fig. 2 Experimental ‘pipeline’ for a hierarchical non-targeted met-

abolomics study initiating with nominal mass, flow infusion ESI-MS

fingerprinting
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to determine whether the biological question under study is

likely to be explainable by reproducible metabolome dif-

ferences (Allwood et al. 2006; Enot et al. 2006, 2007,

2008; Parker et al. 2008). The data in Fig. 4 (adapted from

Lloyd et al. 2011b) provide an example from a real-life

study which examined the impact on human urine metab-

olite composition of both acute and habitual intake of citrus

foods. Unsupervised multivariate data analysis methods

such as PCA (Fig. 4a) are commonly used in metabolomics

studies to screen for unexpected groupings or the presence

of potential outlying samples in ESI-MS fingerprint

data (e.g. Broadhurst and Kell 2006; Enot et al. 2008;

Beckmann et al. 2008). Supervised multivariate data

analysis techniques such as linear discriminant analysis

(LDA) provide methods to discriminate labelled biological

classes linked to the underlying signal behaviour within the

ESI-MS fingerprints under comparison. When urine sam-

ples were labeled by volunteer ID and subjected to PC-

LDA it can be seen clearly (Fig. 4b) that two individuals

were separate from all other volunteers. Subsequent

investigation revealed that both outlying individuals had

paracetamol breakdown products in their urine which

would have confounded efficient data modeling had these

two individuals not been removed from the data set. Sim-

ilar multivariate data analysis approaches can be used to

look for evidence of experimental factors that might

unknowingly partition data, for example gender differences

(Fig. 4c). The use of such algorithms to provide an

exploratory overview of the behavior of data representing a

sample population, particularly after labeling by specific

meta-data attributes, is an important step in confirming that

the overall experimental statistical design is adequate.

5.1.3 Validating experimental design

To assess whether assigned sample classifications are not

only distinctive, but also adequate to warrant deeper me-

tabolome investigation it is desirable to have quantitative

measures of the ‘goodness of separation’ of the biological

classes under investigation, preferably using more than one

data analysis approach (Enot and Draper 2007; Enot et al.

2006, 2007, 2008). Good discrimination of each citrus food

consumption level class is evident in PC-LDA scores plots

comparing ESI-MS fingerprints of fasting urine samples

(Fig. 4d). The Eigenvalue (Tw) for separation between

high and lower level citrus consumers in the first dis-

criminant function dimension (DF1) was *2 which indi-

cated a likelihood of robust classification (Enot et al. 2008),

providing confidence that further investigation of this

biological problem using non-targeted flow infusion ESI-

MS fingerprinting data was potentially worthwhile. As in

any study using data with high dimensionality it is very

important to validate that the differences between any

biological classes are robust (Somorjai et al. 2003; Lyons-

Weiler et al. 2005; Broadhurst and Kell 2006; Enot et al.

2008). It is therefore essential to confirm the robustness of

the classification by using other data analysis tools, such as

random forest agglomerative decision trees (RF; Breiman

2001) or partial least squares-discriminant analysis (PLS-

DA; Szymanska et al. 2011) and to calculate informative

measures of model sensitivity and specificity (Broadhurst

and Kell 2006; Enot et al. 2006, 2007, 2008; Westerhuis

et al. 2008). Validation of classification in the example

study included firstly, assessing the area under the receiver

operating characteristic (ROC) curve (AUC) which

aggregates performance across the entire range of trade-

offs between true positive rate and false positive rate and

ranges from 0.5 (indicating random performance) to 1.0
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Fig. 3 Sample batch ‘mean intensity shifting’ to align ESI-MS

fingerprint data. Plots show log10-transformed total ion intensity data

points of each mass spectrum (e.g. Fig. 1b) in injection order with a

solid line indicating the mean value for a batch of 24 samples:

a before and b after mean shift of batch mean intensities
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(denoting perfect classification). Secondly, random forest

(RF) was employed in the analysis of the urine fingerprint

data, where the RF classification margin is defined as the

proportion of votes for the correct class minus the maxi-

mum proportion of votes for the other classes—the larger

the margin, the more confidence in the classification. The

RF margin values of the pair-wise comparison between the

high and low citrus groups was [0.25, and the AUC was

[0.9, indicating excellent classification (Fig. 4e).

5.2 Feature selection in flow infusion ESI-MS

fingerprint data models

Once adequate classification of samples has been demon-

strated, feature selection techniques can be used to dis-

cover mass signals potentially responsible for ‘explaining’

metabolomic differences between each sample class.

Random forest (RF) models cope well with high dimen-

sional data sets and multiclass problems, are robust clas-

sifiers and, more importantly, also provide insight into the

structure of the data under study by quantifying the con-

fidence in classification voting and by quantifying the

importance of each ‘explanatory’ variable for the classifi-

cation task (Breiman 2001). The RF importance scores of

the top 20 ranked signals responsible for discriminating

between the high and low citrus exposure classes are

shown in Fig. 5a. In any modelling experiment using data

with high dimensionality it is important to be confident that

feature selection methods are identifying attributes that not

only are statistically significant but importantly make

biological sense and lead to testable hypotheses (Enot

et al. 2006). In our experience, in RF models comparing

two biological classes displaying relatively discrete
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Fig. 4 Quality control and experimental design validation in a non-

targeted, flow infusion, nominal mass ESI-MS fingerprinting exper-

iment. a Analysis of spectra derived from urine samples by ?ve ion

mode ESI-MS (80–550 m/z) using principal component analysis

(PCA). Classes are labelled with symbols related to time of collection:

crosses pre-test day evening/night urine samples, circles fasting spot

urine, triangles 3 h post-prandial urine samples. Total percentage

explained variances for each PC are given in brackets. Circled in red
are biological replicates from a potential volunteer outlier. Potential

outlying technical/experimental replicates are highlighted in boxes;

b Analysis of urine samples by ?ve ion mode ESI-MS (100–550 m/z)

using PC-linear discriminant analysis (PC-LDA), using ‘ID’ as the

class structure, as a but with more samples per person. Eigenvalues
(Tw values) are given in brackets; c Analysis of urine samples by ?ve

ion mode ESI-MS (100–550 m/z) using PC-LDA with ‘Gender’ as the

class structure (F female and M male). Tw values are given in

brackets; d PC-LDA of ?ve ion mode ESI-MS fingerprints

(100–220 m/z) of fasting urine using ‘citrus consumption’—high,

medium and low as the class structure (adapted from Lloyd et al.

2011). Tw values are given in brackets; e pair-wise classification

robustness comparisons between the citrus consumer classes. ACC
classification accuracy; AUC area under the (ROC receiver operating

characteristic) curve; RF Mar random forest (RF) classification

margin (Color figure online)
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metabolome differences, it is not unusual for Importance

Scores to drop sharply and then quickly level out as the

signals become less significant as shown in Fig. 5b (Enot

et al. 2006, 2007, 2008; Beckmann et al. 2007, 2010; Favé

et al. 2011; Lloyd et al. 2011b). From the analysis of a wide

range of data sets we have determined that features with an

RF importance score[0.02 are likely to make a significant

contribution to a binary (two class) classification model.
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Fig. 5 Feature selection, targeted FT-ICR-MS analysis and signal

annotation in a flow infusion ESI-MS fingerprint model discriminat-

ing volunteers on the basis of citrus consumption levels. a The top 10

positive ion features (m/z 100–550) discriminating between high and

low habitual citrus consumers; b random forest importance scores of

the top ranked signals discriminating between ‘High’ and ‘Low’ citrus

fruit consumption. Inset shows a dendrogram constructed from

Pearson correlation analysis of top positive ion signals. c An example

of a nominal mass bin containing several signals, in this case proline

betaine [M ? K]1?, within the nominal mass bin m/z 182, is masking

a 4-hydroxyproline betaine [M ? Na]1?; d structure of proline

betaine, a compound highlighted several times following MZedDB

annotation of signals explanatory of citrus exposure levels. e Electro-

spray ionization tandem mass spectrometry (ESI MS/MS) spectra of

the nominal mass bin containing putative proline betaine [M ? H] 1?

(m/z 144) from a pool of urine derived from mixing samples from 4

volunteers; f the ESI-MS/MS spectra of an authentic sample of

synthetic proline betaine [M ? H]1?; g Box plot of the top

explanatory metabolite signal (m/z 182) discriminating between High

and Low habitual citrus fruit consumers. Where: the box indicates the

interquartile range; the red horizontal bar the median; vertical bars
the maximum and minimum values up to 1.59 interquartile range;

error bars represent the standard error of 12 volunteers. e–g Are

adapted from Lloyd et al. (2011) (Color figure online)
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Non-targeted ESI-MS fingerprint models additionally

have several properties inherent to the data structure which

can help to perform a ‘sanity’ check on any potentially

explanatory variables. Firstly, the fact that most metabo-

lites are represented by several signals (including salt

adducts, isotopes, clusters and neutral losses) means that

even if an single adduct is obscured by the presence of

isobaric molecules found in the same mass bin then there is

always the chance that other mass bins containing different

adducts derived from the same parent molecule will not be

effected (see Catchpole et al. 2005; Enot et al. 2007 for

detailed examples). An additional factor resulting from the

presence of multiple ions derived from the same metabolite

is that many of the more abundant signals should co-vary

and would have an equal chance of being selected as an

explanatory signal after feature selection; such correla-

tion behaviour can be used to guide signal annotations

(Tautenhahn et al. 2007; Overy et al. 2008; Enot et al.

2008; Takahashi et al. 2008; Draper et al. 2009; Fuhrer

et al. 2011; Brown et al. 2011; Lloyd et al. 2011c). Dis-

played as Pearson correlation coefficient data, the inset in

Fig. 5b shows part of the results of a correlation analysis

between the highly ranked ESI-MS positive ion m/z signals

discriminating high-level from low-level citrus food con-

sumers. It can be seen that several of the top ranked signals

are tightly correlated which suggests they may be related to

the same metabolite or metabolite pathway. A cursory

examination of the nominal mass mathematical differences

between tightly linked m/z signals reveals several differing

by 1 amu which are potentially isotopes (e.g. 144:145, and

218:219) and several differing by 22 amu (e.g. 144:166) or

38 amu (e.g. 144:182) which could present an [M ? H]?,

[M ? Na]? and [M ? K]? series. Thus knowing that

multiple ionised representations of the same molecule

would be expected to be highly ranked in classification

experiments provides a further useful internal check for the

quality of data models (Overy et al. 2008). Importantly,

in situations where accurate mass information is available

then these relationships, if confirmed, can quickly indicate

which of the ion species is in fact a pseudo-parental ion to

guide the annotation process. There have been an

increasing number of reports in which ‘in house’ algo-

rithms and bespoke ESI-MS signal annotation tools have

been developed specifically to identify ions with specific

mathematical relationships using both nominal mass data

(e.g. Overy et al. 2008; Parker et al. 2008; Ward et al.

2010) and accurate mass data (Gorlach and Richmond

1999; Tautenhahn et al. 2007; Draper et al. 2009; Payne

et al. 2009; Brown et al. 2011; Favé et al. 2011; Lloyd et al.

2011b, c; Kuhl et al. 2012).

It is recommended that a thorough evaluation of rela-

tive statistical significance levels, correlation behaviour

and mathematical relationships is undertaken before

committing samples to further targeted analysis in order to

structurally annotate and/or quantify metabolites poten-

tially explanatory of the biological question under study.

5.3 Explanatory signal annotation and hypothesis

generation

5.3.1 Targeted FT-ICR-MS analysis of selected nominal

mass bins

As nominal mass bins can contain one or several isobaric

mass peaks when analysed by targeted FT-ICR-MS it is

important to identify signals that behave consistently to

identify ion species that may be responsible for the selec-

tion of a potentially explanatory mass bin. Thus to reduce

the impact of inter-class differences, it is recommended

that targeted FT-ICR-MS analysis is performed on several

pools of samples (at least 3 pools) of each class. Two

methods of FT-ICR-MS analysis can be implemented

depending on whether a particular matrix is to be used

repeatedly in a range of investigations. Firstly, as demon-

strated by the citrus food consumption experiment, ‘one

off’ narrow mass window scans (3–10 amu) around the

nominal mass regions of interest can be undertaken using

longer flow infusions times in narrow SIM mode, particu-

larly in an instance where the signal intensity is relatively

weak. Alternatively, if the sample type is to be regularly

used then committing time and resources to a detailed FT-

ICR-MS ‘matrix’ analysis in narrow SIM mode (across

whole mass range; 50–1,400 m/z) could be worthwhile in

order to produce a ‘checklist’ of accurate mass signals to be

routinely expected in any particular matrix. It is well

known that the number of scans acquired for each spectrum

greatly affects the reproducibility of the resulting spectrum

(Southam et al. 2007; Han et al. 2008; Giavalisco et al.

2009; Junot et al. 2010; Ohta et al. 2010). Optimization in

our lab has shown that approximately 50 scans (in over-

lapping 30 amu ‘sliding’ windows) are required for each

mass range, addressing the balance between quantification

accuracy and acquisition time (and thus sample through-

put). In both methods (narrow mass window scanning and

‘matrix’ analysis) the output is a table of accurate masses

(down to 5 decimal places) together with their relative

intensities for signals seen to be reproducible within each

biological sample type. These data are then available for

attempts at structural annotation to identify the areas of

metabolism highlighted by non-targeted, flow infusion

ESI-MS fingerprinting.

5.3.2 Structural annotation of FT-ICR-MS peaks

The description and criticism of procedures for the structural

annotation of accurate mass data developed using ESI-MS
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analytical platforms have been the subject of a range of

excellent original papers over the past decade and the detailed

functionalities of the algorithms used are beyond the scope of

the present review (for examples see Stoll et al. 2006; Kind

and Fiehn 2006, 2007, 2010; Tautenhahn et al. 2007; Iijima

et al. 2008; Nakamura et al. 2008; Werner et al. 2008; Draper

et al. 2009; Wishart 2009; Brown et al. 2009, 2011; Kuhl et al.

2012). In parallel with the rapid increase in the number of

publications describing experiments using ESI-MS analytical

technology (both UHPLC-MS and direct infusion methods)

has been the emergence of new (and modification of existing)

databases containing metabolite information in order to

facilitate putative annotation of accurate mass signals

(e.g. PubChem, http://pubchem.ncbi.nlm.nih.gov/; HMDB,

http://www.hmdb.ca/; KEGG, http://www.genome.jp/kegg/;

KNapSAcK, http://kanaya.naist.jp/KNApSAcK/; MZedDB,

http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html; and

MMD, Brown et al. 2009).

As described in Sect. 5.2, a small number (12–15) of

nominal mass bins in ESI-MS fingerprints of fasting urine

were selected as explanatory of different exposure to citrus

foods in free-living human volunteers. Five nominal mass

signals within this group (m/z 198, 182, 166, 144, 145)

were very strongly correlated (Fig. 5b) and were therefore

subjected to targeted FT-ICR-MS analysis using narrow

SIM windows. High resolution (100,000 FWHM) spectra

of each targeted mass bin was examined in replicates of 4

independent sample pools representing urine from indi-

vidual classes as either high or low citrus consumers (e.g.

see Fig. 5c). After interrogation of MZedDB at 1 ppm

mass accuracy we observed that proline betaine (Fig. 5d),

an abundant component of citrus fruits was tentatively

explanatory of habitual exposure to citrus-containing

foods. Further MS/MS analysis confirmed this putative

identification using a chemical standard as a reference

(Fig. 5e, f). This result makes biological sense (Fig. 5g)

and is a good indicator of the robustness of this meta-

bolomics workflow used routinely in Aberystwyth. These

results form a solid foundation for the recommendation of

proline betaine as a potential biomarker for citrus food

exposure (Lloyd et al. 2011b) which can now be validated

using target analytical methods in other human

populations.

6 Conclusions and final comments

There are many mass spectrometry-based approaches to

metabolomics and this review has provided details of how

flow infusion ESI-MS fingerprinting has been established

in a plethora of experimental situations. This approach is

employed without recourse to chromatographic separation

and therefore its speed and minimal data pre-processing

requirements make it particularly attractive when dealing

with large sample sets. The lack of a deconvolution step

means that neither artefacts nor apparent missing values are

introduced into the metabolite data. Isomers are not sepa-

rated and cannot be readily identified; however, if a pure

metabolite is found within a particular accurate mass

window its empirical formula can be generated and the

metabolite’s fragmentation pattern can be used to gen-

erate structural information and hence its unequivocal

identification.

ESI-MS offers a very powerful ‘first pass’ screening of

large sample populations in pilot experiments using nom-

inal mass measurements. At this stage an early indication

of any differences between biological classes can be gen-

erated at the metabolite level. This screening stage can be

readily validated as large sample numbers can be analysed.

Thus robust statistical analysis may be conducted provid-

ing an objective indication of the discriminatory ability and

the population sizes needed in the different biological

classes. Following this stage more time consuming chro-

matographic separation by LC or CE can be used and

specific metabolites identified if necessary using high mass

resolution spectrometers with MS–MS or MSn capabilities.

It has long since been believed that ion suppression

limits the use of ESI-MS fingerprinting for metabolomics

investigations. This review has admirably demonstrated

that this is a myth and comments like this should be

ignored. The opportunity of rapidly obtaining useful

information from a first pass ESI-MS fingerprinting

experiment greatly outweighs the probability that ion

suppression will render the data useless. Indeed it is per-

tinent to note that the suppression is largely removed by

using nano-infusion with dilute sample extracts and many

recent investigations have indeed used such devices as the

interface to the ESI source. The majority of ESI-MS fin-

gerprinting experiments specifically measure signal rela-

tive ratios and are not used to generate quantitative data.

This being said, several recent publications have advocated

the use of a commercial ‘Absolute IDQ’ kit (Biocrates Life

Sciences AG) in order to routinely generate quantitative

data from flow infusion experiments (e.g. Mittelstrass et al.

2011; Rubio-Aliaga et al. 2011). However it should be

noted that such experiments are in fact targeted to a subset

of more lipophilic metabolites (dominated by carnitines

and phospholipids, but including some amino acids) and as

such cannot offer comprehensive metabolite coverage and

are in fact relevant mainly to the analysis of animal tissues

and animal biofluids. It is likely that the trend of using

commercially supplied sets of reference chemicals in

combination with standardized data generation methods is

likely to increase in the future to provide coverage of rel-

atively abundant metabolite classes found in a wider range

of sample types
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More than a decade of ESI-MS fingerprinting has shown

us not only its capabilities and its position in metabolomics

along with NMR, GC–MS and LC–MS but also the need

for high resolution and accurate mass measurements to

push metabolite profiling to its limits. Researchers have

used FT-ICR-MS technology since it became commer-

cially available at the end of the last century and about one

half of the, relatively comprehensive, list of applications in

Table 1 has used ultra-high resolution instrumentation

either alone or in hierarchical workflows following high

throughput nominal mass analysis. The advantage of high

resolution, accurate mass experiments is the direct gener-

ation of chemical sum formula which, combined with data

base searches, allow immediate tentative annotation of

signals. In-line or off-line fragmentation experiments

together with isotopic pattern analysis can help in con-

firming potential identities and databases to aid in this

process are likely to become increasing sophisticated and

more comprehensive in their coverage.

The new developments are exciting. TOF instruments like

Leco’s CitiusTM LC-HRT, Brucker’s maXisTM UHR-TOF,

Agilent’s 6550 iFunnel Q-TOF LC/MS, AB SCIEX Triple-

TOFTM 5600 System and Waters’ SYNAPT G2-S MS are

approaching 100,000 mass resolution routinely and/or sub-ppm

mass accuracies at a breathtaking 50 to 200 Hz sampling rate.

Thermo Scientific’s Orbi-trap technology aims to replace FT-

ICR-MS technology with hybrids like the Orbitrap Velos Pro or

the Q Exactive LC–MS. Whereas the Thermo Scientific’s FT-

Ultra achieves 1 million mass resolution Orbi-trap technology

is currently limited to 140,000 with 1 ppm mass accuracy at a

1 Hz sampling rate. Bruker however has installed already some

new 18 T SolariX instruments for those who need more accu-

racy and resolution. All these new generation instruments will

replace older Q-TOF and ion-trap instrumentation like the

Premier series, QSTAR, early Bruker/Agilent TOFs and

Thermo LTQs. It becomes clear that for each application,

interest or budget one can get a suitable high or even ultra-high

resolution LC–MS instrument, but it is certain that the new

Q-TOFs and Orbitraps are well suited for ESI-MS experiments.

With ever improving TOF and Orbi trap hybrid tech-

nologies for LC–MS applications linked to nano-flow

infusion and improving data pre-processing tools we expect

not only more applications reporting flow injection, direct

or nano-flow infusion, but also a shift from ESI-MS fin-

gerprinting to non-targeted high resolution, accurate mass

ESI-MS profiling in the foreseeable future.
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