
Supplemental Information 

Metabolite Profiling 

Metabolite profiling data of 600 samples was acquired separately for the two independent 

sub-studies described in the main text with 300 samples in each study. The two studies were 

defined as sub-study 1 and sub-study 2. Sample information was blinded to the analysts (WD, 

DW, MB, RG) until after data acquisition. Serum samples were prepared in a randomised 

order and according to a protocol described elsewhere (1, 2). Briefly, samples were allowed 

to defrost on ice at 4°C. For deproteinization, 420 µL of methanol (Sigma-Aldrich, UK) were 

added to a 140 µL aliquot of serum. The samples were vortex mixed for 15 s followed by 

centrifugation (15 min, 13 363g). Two aliquots of 220 µL were transferred to separate 1.5 

mL polypropylene Eppendorf tubes (Fisher Scientific, Loughborough, UK) and lyophilised 

(HETO VR MAXI vacuum centrifuge attached to a HET CT/DW 60E cooling trap; Thermo 

Life Sciences, Basingstoke, UK). 

One lyophilised aliquot was used for analysis, applying a UPLC-MS platform in positive ion 

mode and the second aliquot was employed for analysis applying an ultra-performance liquid 

chromatography-mass spectrometry (UPLC-MS) platform in negative ion mode. The 

remaining 60 µL of serum from each participant was pooled to create a single pooled Quality 

Control (QC) sample, of which 140 µL aliquots were deproteinized and lyophilised as 

described above. These QC samples were applied for conditioning of the analytical system, 

signal correction and quality assurance as previously described (1, 3). 

Samples in sub-study 1 and sub-study 2 were analysed in a random order and in two 

independent experiments, each experiment consisting of three analytical batches. Batches 1-3 

were applied in sub-study 1 and batches 4-6 were applied in sub-study 2. The respective 

batches were composed of 100 subject samples and 28 intermediate QC injections, which 

were completed within 44 h after sample reconstitution and batch initiation. All samples were 

reconstituted in 70 µL 50:50 methanol/water followed by centrifugation for 15 min at 



13,363g. The supernatants were transferred to 2 mL low-volume chromatography vials sealed 

with septum containing screw caps and stored at 4 °C in the UPLC autosampler.  

Analytical UPLC-MS measurements were carried out on an ACQUITY UPLC system 

(Waters, Elstree, UK) that was interfaced with a LTQ-Orbitrap XL hybrid mass spectrometer 

equipped with an electrospray ionisation source (ThermoFisher Scientific, Bremen, 

Germany). The UPLC method was operated over a 22 minute run time as described 

previously (4). The same gradient was applied for positive and negative ion mode to enable 

accurate integration of data for metabolite identification for both ion modes. In total, 10µl of 

sample was injected on to an ACQUITY BEH C18 column (Waters, Elstres, UK; 2.1 mm i.d., 

100 mm length, 1.7 µm particle size). The column was eluted at a flow rate of 0.4 ml.min-1 

with a binary solvent gradient composed of A (99.9% water and 0.1% formic acid) and B 

(99.9% methanol and 0.1% formic acid) and a column temperature of 50 °C. The column was 

operated for three analytical batches (separately, 3 positive ion mode for one column and 3 

negative ion mode for a separate column). 50% of the column eluent was introduced to the 

electrospray source of the LTQ-Orbitrap XL mass spectrometer. The mass spectrometer was 

operated in one ion mode and was tuned using a calibration solution and a single mass (m/z 

514 positive ion mode and m/z 524 negative ion mode) at the start of each set of 300 subject 

samples. Mass calibration was performed according to the manufacturer's instructions before 

each analytical batch. Accurate mass data was acquired in the m/z range 50-1000 with a scan 

rate of 0.4 s. After each analytical batch the column was washed for 30 minutes with 100% 

methanol. 

 

Statistical analyses  

Due to the comparison with QC samples, unreliably detected metabolites were deleted from 

the data sets (see, 'Raw Data Pre-Processing'). Consequently, missing values in the remaining 

data might reflect ions with a concentration below detection limit or truly absent ions. 



Accordingly, missing values in the combined dataset (batches 1-6) for positive and negative 

ion modes respectively were replaced by a value close to zero; namely, the higher value from 

two calculations: (a) mean value for the metabolite minus 3 standards deviations or (b) lowest 

value in distribution x 0.5.  

 

Classification-based selection of metabolites 

For feature selection, also known as variable selection as part of the model construction 

process, we applied multivariate classification-based feature selection using Random Forests 

(RF) (5) and Partial Least Squares Discriminant Analysis (PLS-DA) (6) in the two sub-

studies. Two R packages, randomForest and pls, were employed. To remove the dependency 

between metabolite ranking and metabolite concentration (7), autoscaling was applied before 

feature selection. 

RF is a machine learning strategy based on growing an ensemble of many binary decision 

trees. With RF, random training sets (i.e. bootstrap samples) are repeatedly drawn from all 

available study participants. For each bootstrap sample, a decision tree is constructed by 

randomly choosing a variable subset of all predictor variables at each node. Among these 

predictors, RF selects the variable that best splits data into two daughter nodes. The 

performance of each tree is tested in the out of bag (oob) sample which comprises the study 

participants not included in the respective bootstrap sample used to construct the tree. In our 

data, ntree and mtry were fixed at 500 and one third of predictor variables, respectively. In 

total, 100 bootstrap samples were selected with replacement on the matched case-control 

pairs. Metabolites were ranked according to the RF importance scores reflecting the 

difference between oob error of a variable randomly permuted and the original variable. The 

higher the importance score, the more important a predictor is with regards to classification.     

PLS-DA is an extension of the partial least squares method by Wold (8), which extracts 

successive linear combinations of the original explanatory variables in order to maximize the 



covariance between these variables and a set of response variables. In the special case of PLS-

DA, the response variable is binary and the latent variables are selected such that a large 

proportion of variance in the explanatory variables is explained and maximum separation 

between cases and controls is obtained (6). Metabolites of each sub-study were ranked 

according to the regression coefficients representing the importance of each metabolite in 

classification.  

The results of the two methods were aggregated to a ranking list by the average of each 

ranking score. Here, the average ranking score indicates the overall importance of each 

metabolite or metabolite group with regards to classification of T2D cases and controls. A 

subset of 60 predictors per ion mode and sub-study were selected for further statistical 

analyses, because larger subsets would not improve discrimination accuracy of the models 

(data not shown).   
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