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As the world progresses from a fossil-fuel based economy to a

more sustainable one, synthetic biology will become

increasingly important for the production of high-value fine

chemicals as well as low-value commodities in bulk. The

integration of metabolomics and fluxomics within synthetic

biology projects will be vital at all levels, including the initial

design of the pathways to be generated, through to the

optimisation of those pathways so that more efficient

conversion of low-cost starting materials into highly desirable

products can be achieved. This review highlights these areas

and details the most important and exciting advances being

made in this area.
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Metabolite and metabolic engineering
One of the main goals of synthetic biology is to generate

the desired material with a good conversion from sub-

strate(s) to product whilst reducing unwanted (side-)

products. This is not a new goal for biology and has its

routes from metabolite/metabolic engineering, whereby

genetic and regulatory processes and pathways within

cells are optimised with some preconceived idea of which

pathways are important in order to increase the pro-

duction of a whole range of valuable substances. At the

same time efforts are also made to reduce the energy costs

to the cells, reduce the production of any undesirable

substances (both with respect to yield of the end product

and also metabolite pathway inhibition), and to reduce

overall production costs (Figure 1 illustrates the meta-

bolic engineering process). These can all be highly

important aspects, especially when one considers that

these may be industrial-scale applications and for
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low-valuable products an increase of only 1% production

yield could be highly rewarding in financial terms (e.g.

carbon conversion into biofuel production).

A recent and highly topical study of metabolic pathway

engineering based on metabolomics [1] involved the de-

velopment of novel bio-ethanol producing yeast strains

with increased tolerance to inhibitors in lignocellulosic

hyrdolysates. Saccharomyces cerevisiae is used to produce

bio-ethanol from lignocellulosic materials from agricul-

ture and industrial wastes, as it is a fast sugar consumer,

gives a high ethanol yield from glucose, and is said to have

a higher resistance to ethanol and other compounds

present in lignocellulosic hyrdolysates than bacteria [2].

These toxic compounds, which negatively affect

microbial growth, metabolism, and of course ethanol

yield, include weak organic acids (such as acetic and

formic acids), furan derivatives and phenolics. This study

examined the effect of acetic acid on xylose fermentation

using metabolite profiling to identify and target genes for

improving organic acid tolerance. Results revealed that

several metabolites involved in the non-oxidative pentose

phosphate pathway (PPP) were significantly accumulated

by the addition of acetate, and the authors suggested the

possibility that acetic acid slows down this pathway.

Therefore, metabolic engineering was focused on the

non-PPP. A gene encoding a PPP-related enzyme (trans-

aldolase or transketolase) was overexpressed in the fer-

menting yeast, which successfully conferred ethanol

productivity in the presence of both acetic and formic

acid [2].

Lignocellulosic biomass hyrdolysates are said to be

increasingly used as feedstock for industrial fermenta-

tions [3]. A recent article studied the performance of six

industrial relevant microorganisms (two bacteria, two

yeasts, and two fungi) in terms of their ability to utilise

monosaccharides in the biomass, resistance against inhibi-

tors, and their ability to grow on different types of feed-

stock hydrolysates. The authors concluded that a

substrate-orientated approach, rather than the more com-

monly used product-oriented approach towards the selec-

tion of a microbial production host, would avoid the

requirement for extensive metabolic engineering [3].

Whilst many of the studies into biofuels involve

approaches utilising terrestrial crops, a recent study

involved metabolomic analysis of aquatic microbes,

specifically, oxygenic photoautotrophs (AMOPs). Some

AMOPs, such as cyanobacteria, are said to offer several

advantages over terrestrial crop biofuel production

methods, a major one being the direct excretion of
www.sciencedirect.com
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Flow diagram of the metabolic engineering process highlighting the role metabolomics has to play.
alternative fuel precursors, such as hydrogen [4�]. This

study used metabolic and genetic engineering to con-

struct a mutant of the cyanobacterium Synechococcus sp.

which lacked the enzyme for the NADH-dependent

reduction of pyruvate to D-lactate. Subsequent metabo-

lomic analysis by nuclear magnetic resonance (NMR)

spectroscopy and liquid chromatography-mass spectrom-

etry (LC–MS) showed that autofermentation by this

mutant strain resulted in no D-lactate production and

higher concentrations of excreted acetate, alanine, succi-

nate, and up to a 5-fold increase in hydrogen production

compared to the wild type [4�]. Importantly, this genetic

elimination of metabolic pathways which improved H2

levels could be applied to other AMOPs [4�], illustrating

that even small changes in a low product forming organ-

ism with rational metabolic engineering can result in

significant product yields.

Other metabolic engineering areas of interest include

those involved in the engineering of complex metabolic

pathways in microbes. One recent study involved tar-

geted metabolic profiling of what these authors termed

‘deleterious interactions between pathway intermedi-

ates and host cell metabolism’ [5]. This was performed

in order to identify modes of toxicity from the accumu-

lation of unwanted metabolites. In addition to identify-

ing the pathways affected (including inhibition of fatty

acid biosynthesis) and any toxins involved (3-hydroxy-3-

methylglutaryl-coenzyme A (HMG-CoA)), these authors

also identified ways to counteract this through the

addition of palmitic acid to the growth medium, demon-

strating the ability to optimise synthetic biological sys-

tems with their approach [5]. This also demonstrates the

ability of metabolic engineering to go beyond genetic

optimisation of the organism and to consider the
www.sciencedirect.com 
environment in which the organism grows. In the future,

the optimisation of the genetic makeup may necessitate

careful tailoring of the growth medium so that the host

organisms undergo less perturbation.

In an excellent review Corynebacterium glutamicum, a

species of the class Actinobacteria used for the industrial

scale production of various amino acids of this species.

Nesvera and Patek [6] summarized the latest develop-

ments in the field of genetic engineering in C. glutamicum,

as well as the use of ‘omics-based  approaches, including

transcriptomics, proteomics, metabolomics, and fluxo-

mics [7]. They showed that large-scale datasets from

these functional analyses could be combined to produce

predictive models, and through integration of the infor-

mation obtained this could result in a complex descrip-

tion of all cell interactions, one of the aims of systems

biology [6]. The review also includes some of the chal-

lenges which need to be surmounted in order to imple-

ment these tools fully, enabling the construction of

superior production strains of this important bacterium.

These include the need for co-ordinated changes in

metabolism which tune higher flux through the engin-

eered pathway, and avoiding depletion or overloading

levels of particular metabolites, which can lead to a more

balanced and stable production strain. This is in addition

to understanding and describing the control mechanisms

within regulatory networks, the ability to control cell

division and optimisation of the cell properties and

downstream processes [6]. Although it is clear to us that

this is incredibly complex to model at this stage, this

report demonstrates the potential power of coupling

systems biology to metabolic engineering, whereby sys-

tem-level knowledge about the bacterial host could lead

to the identification of potential bottlenecks within the
Current Opinion in Biotechnology 2012, 23:22–28
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host, which would then be the targets for improved strain

design.

Other reviews include those concerning industrial scale

metabolic engineering [8], highlighting the ‘older’ and

‘newer’ tools of metabolic engineering and synthetic

biology respectively. In combination with more recent

whole cell engineering approaches such as genome shuf-

fling, global transcriptome machinery engineering and

directed evolutionary engineering. For a further excellent

review covering metabolic engineering and synthetic

biology for the optimisation of both medicinal and aro-

matic plants the reader is directed to Hendrawati et al. [9].

Many synthetic biology studies have thus far involved

microbes, and given the tractability of the system this is

perhaps not surprising. Microbial metabolomics is very

popular [10�] and this is not surprising when one considers

how much this field supports and complements a wide

range of microbial research areas, ranging from metabolic

engineering to drug discovery [11]. Winder et al. used the

metabolic fingerprinting (Table 1) approach of Fourier

transform infrared (FT-IR) spectroscopy to monitor

whole-cell dioxygenase-catalysed biotransformation of

toluene to toluene cis-glycol in fed-batch cultures of E.
coli. PLSR could be used to correlate metabolic finger-

prints with the level of product concentration, and their

results demonstrated the potential of this high-through-

put approach to assess temporal biochemical dynamics in

complex bioprocesses, and also provided rapid infor-

mation on product yields and quality without the require-

ment for time-consuming chromatographic product

analysis [12]. The same group studied global metabolic

profiling of E. coli by GC–MS for the evaluation of
Table 1

Glossary of some of the terminology used within metabolomics

Metabolome All low-molecular weight metabolites

molecules, and secondary metabolite

such as a single organism, which are

Metabolomics The non-biased and non-targeted id

Fluxomics Specific labelled (13C or 15N) substra

the destination of carbon or nitrogen

isotopomer analyses.

Metabolic profiling Identification and quantification of a 

related to a specific metabolic pathw

Metabolic fingerprinting Global, high-throughput, rapid analys

high-throughput screening tool to dis

and processes. Enables rapid bioche

and/or the end of production lines fo

Metabolic footprinting Analysis of the metabolites secreted

organism is growing in media/culture

which can be valuable products whil

Metabolic/metabolite

engineering

Optimisation of genomic and regulat

valuable substances, and/or reduce 

more energy efficient biochemical pr

Metabolite target analysis Qualitative and quantitative analysis 

metabolic reaction.
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quenching and extraction processes for the accurate

quantification of intracellular bacterial metabolites [13].

The convoluted relationship between intracellular

metabolism and metabolic footprinting in microbiology,

and how this method can assist in the interpretation of cell

communication mechanisms, metabolic engineering and

industrial biotechnological processes is also the subject of

a review by Mapelli et al. [14].

Tissue and cell culture optimisation
Whilst microbes and yeast are very tractable hosts in terms

of genetics and bioreactors can be easily scaled up, they are

relatively ‘simple’ beasts and the production of recombi-

nant proteins that require correct glycosylation for activity

need to be produced in more complex eukaryotic systems.

Thus another important area for synthetic biology is pro-

duct production in tissue and cell culture systems and these

too need careful optimisation; metabolomics can also play a

valuable role here. One recent study involved two models

which were used to evaluate the cellular metabolome and

to optimise the growth media [15]. The first of these was

NMR-based metabolic profiling for the quantification of

metabolites in Chinese hamster ovary (CHO) cell lines

engineered to express a recombinant protein, followed by

the second model of metabolomic analysis of superfusion

media used for drug metabolism and toxicology studies in

in vitro liver slices. Results from the first model highlighted

which culture parameters could be manipulated to opti-

mise growth and protein production. Whilst results from

the second model showed that two of the medium com-

ponents were depleted at a faster rate than any other

nutrients, and augmentation of the starting medium with

these two components (choline and histidine) improved

long-term liver slice viability [15]. A related study involved
 (i.e. metabolic intermediates, hormones and other signalling

s, >1000 kDa) to be found in a biological sample/system,

 the end products of gene expression.

entification and quantification of all metabolites in a biological system.

tes are fed to bacterial, yeast or tissue cultures in order to follow

 within metabolic pathways, using MS- or NMR-based mass

selective number of pre-defined metabolites, which are generally

ay.

is to provide sample classification. Can be used as a rapid

criminate between samples from different biological status, origin,

mical information regarding production yields at set points within

r example.

/excreted by an organism, also known as the exometabolome; if the

 this will include its environmental and growth substances. Some of

st others may be unwanted.

ory processes within cells and tissues to increase production of

production of unwanted substances (i.e. toxins). Can also lead to

ocesses and reduce large-scale production costs.

of one, or several, metabolites related to a specific
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a metabolomics-based approach for the improvement of

CHO cell growth. This utilised LC–MS to identify

extracellular metabolites (the exometabolome, also

known as metabolic footprinting [16,17]) in the medium

of fed-batch CHO reactor cultures, with the aim to

improve cell numbers through metabolic engineering.

This was achieved after the exometabolome showed that

amongst the metabolites identified malate was the most

significant, and metabolic engineering to overexpress

malate dehydrogenase resulted in a 1.9 fold increase in

integral viable cell numbers [18]. This is a very nice

example of where a data-driven analytical process (meta-

bolomics) can lead to ‘hypotheses’ or suggestions for

highly focused rationale metabolic engineering which

resulted in improved synthesis.

Other studies involving nutrient feed, CHO and murine

myeloma non-secreting (NS0) cell lines include work by

Ma et al. [19]. Here, a chemically defined nutrient feed

(CDF) coupled with basal medium preloading was devel-

oped to replace a hydrolysate-containing feed for a fed-

batch NS0 process. Results showed that the CDF enabled

a completely chemically defined feed with an increased

monoclonal antibody titre of 115%. Tests of the CDF in a

CHO process were also indicative of CDF being able to

replace hydrolysate-containing feed with a subsequent

80% increase in product titre [19]. Sellick et al. have

undertaken a body of work in this area including rapid

monitoring of recombinant antibody production in CHO

and NS0 cell lines. This was achieved using the metabolic

fingerprinting [20,21] technique of FT-IR spectroscopy

combined with multivariate statistical analyses (e.g. partial

least squares regression (PLSR)) and was employed to

predict anti-body levels. It was clearly demonstrated that

a spectroscopic approach could be an appropriate starting

point for the potential on-line monitoring and measure-

ment of antibody production in industrial-scale bioreactors

[22]. Other studies by this group include the optimisation

of technologies for the global metabolomic profile of CHO

cell lines, including the evaluation of extraction processes

[23] and effective quenching processes [24]. In combi-

nation, this has led to enhanced recombinant antibody

production (over double) by specific tailoring of the nutri-

ent feed to CHO cells [25]. We expect this approach to be

widely used to enhance protein yields, as feeding specific

substrates through growth can elongate production times

and thus increase product formation.

Stable isotope tracers for engineering
Metabolomics techniques are known to provide very large

datasets and allow for the high-throughput quantification

of metabolites, yet the resultant data-flood [26] from

these methods has been said to provide minimal infor-

mation on the rates and connectivity of metabolic path-

ways [27��]. After all, as Henry Nix once said in his 1990

Keynote address to AURISA (Australasian Urban and

Regional Information Systems Association Inc.):
www.sciencedirect.com 
‘‘Data does not equal information; information does not

equal knowledge; and, most importantly of all, knowl-

edge does not equal wisdom. We have oceans of data,

rivers of information, small puddles of knowledge, and

the odd drop of wisdom.’’

One method to address this problem is the use of stable

isotope tracers. Whereby an isotopically labelled substrate

(e.g. glucose labelled with 13C, or a 15N labelled amino acid

or nitrogen substrate) is fed to the (micro-)organisms being

studied, the products themselves become labelled and can

then be measured using a combination of chromatographic,

mass spectrometry, or NMR spectrometry. This form of

analysis can then be exploited for metabolic pathway

elucidation and metabolic flux determination, which

may then provide targets for engineering approaches.

One recent review of this area termed this form of mass

isotopomer analysis as ‘‘time and relative differences in

systems (TARDIS)-based analysis’’, owing to the fact that

it both measures and quantifies the temporal sequential

emergence of these labelled products [28�].

A recent and very significant study presented a new

method, termed non-targeted tracer fate detection

(NTFD) [27��]. This combined the use of stable isotope

tracers and gas chromatography-mass spectrometry

(GC–MS) with computational analysis, enabling the

quantification of all measurable metabolites derived

from a specific labelled compound, without any a priori
knowledge of a reaction network or compound library.

Using a mixture of labelled and non-labelled, tracer the

NFTD approach can be applied to bacterial cultures,

eukaryotic cell cultures, whole animal systems, and even

non-biological chemical systems. Further, this novel

method provides information about relative flux magni-

tudes into each metabolic pool through the determi-

nation of mass isotopomer distribution (MID) for all

labelled compounds, and is said to provide a framework

for global analysis of metabolic fluxes. The NTFD

approach truly adds new knowledge  to this area and

owing to its non-targeted approach, adds information

about biochemical reactions and metabolites that were

previously unknown [27��]. As the authors themselves

rightly state, NTFD adds a new dimension to the meta-

bolic toolbox [27��]. Reviews of note in this area include

those concerning metabolic flux distributions, genetic

information, computational predictions and experimen-

tal validation of strain engineering [29], and steady-state

metabolic flux analysis (MFA) in plants for the measure-

ment of multiple fluxes in the core network of primary

carbon metabolism [30].

Whilst metabolomics gives only snapshots of metabolite

levels these TARDIS-based analyses allow the flux of

carbon or nitrogen through pathways to be discovered.

The caveat is that cells are cultured in a sole carbon or
Current Opinion in Biotechnology 2012, 23:22–28
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illustrating the increasing research activity and publication trends from

the three related areas; (A) Metabolomics, (B) Metabolic Engineering,

and (C) Synthetic Biology.
nitrogen source and for complex eukaryotic systems this is

not always possible and so isotope calculations can be

more difficult. Though we do believe these flux analyses

will be very valuable for ensuring that the flow of starting

materials is directed towards the product of interest rather

than off to some side branches of the metabolic pathway.

Data integration/analysis processes for
synthetic biology
As the above studies using flux analyses elegantly demon-

strate (and as is the case with all ‘omics’ and related

disciplines involving large and highly complex datasets),

data integration and analytical methods are absolutely

vital, the key which can unlock doors to new insights, add

to knowledge, and open up completely new dimensions

within synthetic biology. A study by Wisselink et al. stated

that one of the challenges in strain improvement by

engineering is the subsequent determination of the mol-

ecular basis of the improved properties which were

enriched from natural genetic variation during selective

conditions [31��]. The authors demonstrated their

approach to this challenge through transcriptome analysis,

intracellular metabolite measurements and metabolic flux

analysis, of glucose-limited and arabinose-limited

anaerobic chemostat cultures of metabolic and evolution-

ary engineered S. cerevisiae (IMS0002) and its non-

evolved ancestor IMS0001. Results identified key genetic

changes contributing to efficient arabinose utilisation by

the engineered S. cerevisiae strain. Such as confirmation

that the galactose transporter is essential for growth on

arabinose, and genes which may be involved in flux-

controlling reactions in arabinose fermentation could be

identified. They tested this by deleting these genes

which caused a 21% reduction of the maximum specific

growth rate on arabinose [31��]. This is a very nice

example of how multi ‘omics’ data can be integrated to

generate new knowledge about carbohydrate utilisation

which can be tested and confirmed to be true. Within

systems biology, this allows the loop within the inductive

approach to knowledge discovery to be completed.

Another study also views reverse engineering of high-

throughput ‘omics’ data to infer biological networks as

one of the challenges in biology. Here, the authors

focused on a systematic analysis of metabolomic network

inference from in silico metabolome data from E. coli and

yeast and showed that it may be possible to predict the

organism’s response and thus underlying metabolic net-

work to different intrinsic and environmental conditions

[32]. Another article of interest involved comparative

analysis of several mathematical and statistical methods

using synthetic datasets produced by simulation of rea-

listic biochemical network models. Using this approach, it

was possible to study how inferences were degraded by

noise, and this allow the study of the extent to which

correlation of metabolomics datasets are capable of reco-

vering features from these biochemical systems. Results
Current Opinion in Biotechnology 2012, 23:22–28 
from these analyses identified a number of major meta-

bolic regulatory configurations that result in strong metab-

olite correlations and demonstrated the utility of

biochemical simulation/modelling for the analysis of

‘omics’ data [33].

Finally, a recent and highly cogent review focuses on a

critical assessment of mathematical techniques used to

infer metabolic networks from time-resolved metabolo-

mics data [34�]. This employed the simulation of data and

analysed four representative methods, as well as in-

cluding an overview of sampling and methods currently

used, compared with reverse engineering methods. Most

significantly, the authors identified large discrepancies

between the requirements of reverse engineering of

metabolic networks and current practice (if a full infer-

ence of a real-world metabolic network is the goal).

Recommendations were also provided for the improve-

ment of time-resolved experimental designs [34�].

Conclusion
The marriage of synthetic biology with metabolomics is a

growing area (Figure 2) and recent studies of interest in

areas not yet mentioned include those involved in plant

biotechnology, such as the work involving overproduction

of tryptophan in GM rice by Matsuda et al. [35], and of

course the many excellent overviews in this area, in-

cluding the use of plant and algae as cell factories to

produce numerous high-value compounds such as

carotenoids [36], as well as the engineering of carotenoid

formation in tomatoes and the application and potential of

both systems biology and synthetic biology approaches

[37]. In terms of systems biology, there are of course a

number of excellent reviews covering areas such as

industrial systems biology [38], systems biology of indus-

trial microorganisms [39], and metabolomics, modelling,

and machine learning in systems biology [40].
www.sciencedirect.com



Synthetic biology Ellis and Goodacre 27
The long-term and mutually beneficial relationship be-

tween synthetic biology and metabolomics incorporating

fluxomics is clearly important for rational metabolic

engineering. Genome-scale metabolic network recon-

structions are being generated almost weekly for differ-

ent species (and strains thereof) and systematic

investigations of these will help pinpoint the so-called

bottlenecks (or what used to be referred to as the

rate-limiting steps http://pubs.acs.org/doi/pdf/10.1021/

ed058p32) in metabolic pathway constructions in new

host organisms. Synthetic biology is here to stay and

rational metabolic engineering of bacteria, yeast, fungi

and mammalian-based systems will become an

important growth area, urgently needed to sustain the

planet’s needs as the population continues to expand at

alarming rates whilst consuming valuable non-renewable

resources.
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