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Use of Pyrolysis Mass Spectrom etry with Superv ised
Learn ing for the Assessment of the Adulteration of Milk of
Different Species
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Binary m ixtures of 0± 20% cows’ m ilk with ewes’ m ilk, 0± 20%

cows’ m ilk with goats’ m ilk, and 0± 5% cow s’ m ilk with goats’ m ilk

were subjected to pyrolysis mass spectrom etry (PyMS). For an alysis

of the pyrolysis mass sp ectra so as to determ ine the p ercentage

adulteration of either caprine or ov ine m ilk w ith bov ine m ilk, par -

tial least-squares regression (PLS), p rincipal com ponents regression

(PCR) and fully interconnected feed-forward ar ti® cial neural net-

works (ANNs) were studied. In the latter case, the w eights were

mod i® ed by u sing the standard back-prop agation algor ithm , and

the nodes u sed a sigm oidal squash ing function . It was fou nd that

each of the methods could be u sed to prov id e calibration models

which gav e excellent pred ictions for the p ercentage adulteration

with cows’ m ilk to , 1% for sam ples, w ith an accuracy of 6 0.5% ,

on which they had not been trained. Scaling the in dividual nodes on

the inpu t layer of ANNs sign i® cantly d ecreased the tim e taken for

the ANNs to learn, com pared with scaling across the whole mass

range; however in one case this approach resulted in poor gener-

alization for th e estimates of percentage cows’ m ilk in ewes’ m ilk.

To assess whether the calibration models had learned th e differ-

ences between the m ilk species or th e d ifferences due to the different

fat conten t of in each of the m ilk types, we also analyzed pu re m ilk

sam ples varyin g in fat conten t by PyMS. Cluster an alysis showed

unequiv ocally that th e m ajor var iation between the d ifferent m ilk

species was not due to var iab le fat conten t. Sin ce an y biological

mater ial can be pyrolyzed in this way, the com bination of PyMS

with superv ised learning constitu tes a rap id , powerful, an d novel

approach to the quantitativ e assessm ent of food ad ulteration gen-

erally.

Index Headings: Authentication ; Ch emom etrics; Neural networks;

Pyrolysis mass spectrom etry; Quantitativ e an alysis.

INTRODUCTION

The production of ewes’ and goats’ milk has gained
signi® cant economic importance in certain Mediterranean
countries as a result of widespread acceptance of tradi-
tional cheeses. Substitution of expensive ewes’ or goats’
milk with cheaper cows’ milk for greater pro® t within
cheese manufacture is an ongoing problem and needs to
be tightly controlled. However, the adulterants are some-
times so similar in appearanc e, taste, and biochemical
composition that routine identi® cation of the substitution
remains a problem. There is therefore a need to develop
accurate, rapid, automated analytical methods for the de-
tection of the adulteration of ovine and caprine milk with
bovine milk.

Several methods are currently used for milk species
identi® cation. These methods fall into three areas: (1)
chromatographic techniques that include gas-liquid chro-
matography 1,2 and high-performance liquid chromatog-
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raphy;3,4 (2) electrophore tic methods including gel elec-
trophoresis 5,6 and isoelectric focusing;7,8 and (3) immu-
nological-based methods such as agar-gel immunodiffu-
sion,8 ± 10 immunoe lectrophore sis,11 immunodotti ng ,12

haemagglutination, 13 and various methods based on the
enzyme-linked immunosorbent assay (ELISA).14± 16

Pyrolysis mass spectrometry (PyMS) is a rapid, auto-
mated, instrument-based technique that permits the ac-
quisition of spectroscopic data from 300 or more samples
per working day. Pyrolysis is the thermal degradation of
a complex nonvolatile material in an inert atmosphere or
a vacuum. It causes molecules to cleave at their weakest
points to produce smaller, volatile fragments called py-
rolysate.17 Curie-point pyrolysis is a particularly repro-
ducible and straightforw ard version of the technique, in
which the sample, dried onto an appropriate metal, is
rapidly heated (0.5 s is typical) to the Curie point of the
metal, which may itself be chosen (358, 480, 510, 530,
610, and 770 8 C are common temperatures). For the anal-
ysis of biological material, the usual pyrolysis tempera-
ture employed is 530 8 C because it has been shown18,19

to give a balance between fragmentation from polysac-
charides (carbohydrates) and protein fractions. A mass
spectrometer can then be used to separate the components
of the pyrolysate on the basis of their mass-to-charge ra-
tio (m/z) to produce a pyrolysis mass spectrum,20 which
can then be used as a ``chemical pro® le’ ’ or ® ngerprint
of the complex material analyzed.

Within the food industry, PyMS has been exploited to
con® rm the provenance of orange juice21 and the quality
of scotch whisky.22,23 However, the interpretation of the
PyMS spectra has conventionally been by the application
of the ``unsupervised’ ’ pattern recognition methods of
principal components analysis (PCA), canonical variates
analysis (CVA), and hierarchical cluster analysis (HCA).
With ``unsupervise d learning’ ’ methods of this sort, the
relevant multivariate algorithms seek ``clusters’ ’ in the
data,24 thereby allowing the investigator to group objects
together on the basis of their perceived closeness; this
process is often subjective because it relies upon the in-
terpretation of complicated scatter plots and dendro-
grams. In addition, such methods, although in some sense
quantitative, are better seen as qualitative since their chief
purpose is merely to distinguish objects or populations.

More recently, various related but much more powerful
methods, most often referred to within the framework of
chemometrics, have been applied to the ``supervised’ ’
analysis of PyMS data.25,26 Arguably, the most signi® cant
of these is the application of (arti® cial) neural networks
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(ANNs). The ® rst demonstration of the ability of ANNs
to discriminate between biological samples from their py-
rolysis mass spectra was for the qualitative assessment of
the assessment of the adulteration of extra virgin olive
oils with various seed oils;27,28 in this study, which was
performed double-blind, neural networks were trained
with the spectra from 12 virgin olive oils, coded 1 at the
output node, and with the spectra from 12 adulterated
oils, which were coded 0. This approach permitted their
rapid and precise assessment, a task which previously
was labor-intensive and very dif® cult. It was most sig-
ni® cant that the traditional ``unsupervised’ ’ multivariate
analyses of PCA, CVA, and HCA failed to separate the
oils according to their virginity or otherwise but rather
discriminated between them on the basis of their cultivar.
Several studies have now shown that this combination of
PyMS and ANNs is also very effective for the rapid iden-
ti® cation of a variety of bacterial strains.29± 32

The above studies all exploited ANNs to solve clas-
si® cation problems, which by de® nition are essentially
qualitative in nature. However, perhaps the most signi® -
cant application of ANNs to the analysis of PyMS data
is to gain accurate and precise quantitative information
about the chemical constituents of microbial (and other)
samples. For example , it has been shown that it is pos-
sible with the use of this method to follow the production
of indole in a number of strains of E. coli grown on
media incorporating various amounts of tryptophan,33 to
quantify the (bio)chemical constituents of complex bio-
chemical binary mixtures of proteins and nucleic acids in
glycogen, and to measure the concentrations of tertiary
mixtures of cells of the bacteria Bacillus subtilis, Esch-
erichia coli, and Staphylococ cus aureus.34± 36 The later
study36 also demonstrated that other supervised learning
methods such as partial least-squares (PLS) and principal
components regression (PCR) could also be used to ex-
tract quantitative information from the spectra of the bi-
nary and tertiary mixtures. Finally, the combination of
PyMS and ANNs also has potential in the screening and
analysis of microbial cultures producing recombinant
proteins37 and antibiotics.38,39

The objective of the present study is to demonstrate
that the combination of PyMS with multivariate data
analyses of PCR, PLS, and ANNs (which employ super-
vised learning algorithms) can permit the rapid assess-
ment of the quantitative adulteration of ovine and caprine
milk with bovine milk.

EXPERIMENTAL

Preparation of eith er Goats’ or Ewes’ Milk Sam ples
Adulterated with Cow s’ Milk. Three types of milk of
certain provenance were used in this study: cows’ milk
was purchased from Highmead Dairies, Llanbydder, Dy-
fed, U.K.; goats’ milk from Tipi Dairy Goat, Amman-
ford, Dyfed, U.K.; and ewes’ milk from C. B. Williams
& Sons, Towcester, Northants, U.K.

Three mixtures were prepared: (A) the ® rst contained
ewes’ milk adulterated with 0 ± 20% cows’ milk in steps
of 1%, while another mixture (B) was of goats’ milk
adulterated with 0 ± 20% cows’ milk in steps of 1%. For
both A and B, two sets of mixtures were then prepared;
the training set consisted of x % cows’ milk and y %

ewes’ or goats’ milk, where x:y were 0:100, 2:98, 4:96,
6:94, 8:92, 10:90, 12:88, 14:86, 16:84, 18:82, and 20:80.
The second, ``unknow n’ ’ test set consisted of (x:y) 1:99,
3:97, 5:95, 7:93, 9:91, 11:89, 13:87, 15:85, 17:83, and
19:81. The third mixture (C) was of goats’ milk adulter-
ated with 0 ± 5% cows’ milk in steps of 0.25%. For this
experiment two sets of mixtures were also prepared. The
training set consisted of x % cows’ milk and y % goats’
milk, where x:y were 0:100, 0.5:99.5, 1:99, 1.5:98.5, 2:
98, 2.5:97.5, 3:97, 3.5:96.5, 4:96, 4.5:95.5, and 5:95. The
second, ``unknow n’ ’ test set consisted of (x:y) 0.25:99.75,
0.75:99.25, 1.25:98.75, 1.75:98.25, 2.25:97.75, 2.75:
97.25, 3.25:96.75, 3.75:96.25, 4.25:95.75, and 4.75:
95.25.

Preparation of Cow s’, Goats’ , and Ewes’ Milk with
Differ ing Fat Contents. In addition to the adulterated
samples (detailed above), various mixtures of the three
pure milks were prepared, which differed in their fat con-
tent. Ten-milliliter samples of each milk were centrifuged
at 3000 g for 20 min; this process had the desired effect
of making the cream layer, which contains the lipids, rise
to the top. The thickness of this layer was measured, and
the ratio of cream to total milk was calculated (Table IA).
Only the fat content of the cows’ milk was given (on the
container it was supplied in), as 3.8% ( 6 0.1%); this per-
centage is very similar to the average fat content of cows’
milk (from many breeds) stated in 1980 as being 3.86% .40

The cream:total ratio was then used to ® nd the percentage
fat content in the goats’ and ewes’ milk samples, which
were calculated to be 4.3% and 5.4% respectively; these
values were also close to the expected published fat con-
tents of 4.5% for goats’ milk41 and 5± 7% for ewes’
milk.42 The cream and water layers were then collected
separately and mixed to make a range of percentages of
fat in the three milk mixtures, details of which are given
in Table IB.

Pyrolysis Mass Spectrom etry. Two and a half mi-
croliters of the above materials was evenly applied onto
iron± nickel foils to give a thin, uniform surface coating.
Prior to pyrolysis, the samples were oven-dried at 50 8 C
for 30 min. Each sample was analyzed in triplicate. The
pyrolysis mass spectrometer used was the Horizon In-
struments PYMS-200X (Horizon Instruments Ltd.,
Heath® eld, E. Sussex, U.K.); for full operational proce-
dures see Refs. 31, 36, and 39. The sample tube carrying
the foil was heated, prior to pyrolysis, at 100 8 C for 5 s.
Curie-point pyrolysis was at 530 8 C for 3 s, with a tem-
perature rise time of 0.5 s. The data from PyMS were
collected over the m/z range 51 to 200 and may be dis-
played as quantitative pyrolysis mass spectra (e.g., as in
Fig. 1). The abscissa represents the m/z ratio, while the
ordinate contains information on the ion count for any
particular m/z value ranging from 51 to 200. Data were
normalized as a percentage of total ion count to remove
the most direct in¯ uence of sample size per se.

Principal Com ponen ts Analysis. Principal compo-
nents analysis is a multivariate statistical technique that
can be used to identify correlations among a set of vari-
ables (in this case 150 m/z intensities) and to transform
the original set of variable s to a new set of uncorrelated
variables called principal components (PCs). For the
present purpose , PCA can be thought of as ® nding a set
of orthogonal axes in 150-dimensional space; these new
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TABLE I. Fat content of cows’, goats’ and ewes’ m ilk (A) and (B)
m ixtures of varying fat con tent.

A

Cow Goat Ewe

Height of liquid (mm)
Cream thickness (mm)
Ratio of cream to total
Percentage fata

8.3
0.7
0.08
3.8

8.3
0.8
0.10
4.3

8.3
1
0.12
5.4

B

Identi® er for CVA plots

Percentage fat in milk mixtures

Cow Goat Ewe

a
b
c
d
e

0
0.38
0.76
1.14
1.52

0
0.43
0.86
1.29
1.72

0
0.54
1.08
1.62
2.16

f
g
h
i
j
k

1.9
2.28
2.66
3.04
3.42
3.8

2.15
2.58
3.01
3.44
3.87
4.3

2.7
3.24
3.78
4.32
4.86
5.4

a This percentage was calculated by using the ratio of the volume of
cream to total liquid and adjusting so that the cow milk had a fat
content of 3.8% (this is the value adhered to 6 0.1%).

FIG. 1. Representative pyrolysis mass spectra of (A) pure cows’ milk
(B) pure goats’ milk, and (C) pure ewes’ milk.

axes (or PCs) are linear combinations of the original vari-
ables and are derived in decreasing order of importance;
therefore , the ® rst PC accounts for the maximum varia-
tion among the samples, and subsequent PCs are chosen
to account for progressively decreasing variance.24,43± 48

The objective of PCA is to see whether the ® rst few
PCs account for most of the variation in the original data.
If they do reduce the number of dimensions required to
display the observed relationships, then the PCs can be
plotted, and ``clusters’ ’ or ``trends’ ’ may be found in the
data. PCA is a variable-direc ted technique and therefore
does not use any a priori knowledge of the groupings
within samples (objects) in the data set. That is to say, it
is unsupervised; thus plots of PCs are thought to display
the natural relationships between the samples.

To effect PCA, we processed the normalized data with
the GENSTAT package 49 run under Microsoft DOS 6.22
on an IBM-compatible PC; this method has been previ-
ously described.44

Canon ical Var iates Analysis. Canonical variate s anal-
ysis is also a multivariate statistical technique, here car-
ried out with the use of the GENSTAT package. Before
CVA was employed, PCA was used to reduce the di-
mensionality of the data, and only those PCs whose ei-
genvalue s accounted for more than 0.1% of the total vari-
ance were used. After the ® rst few PCs, the axes gener-
ated will usually be due to random ``noise’ ’ in the data;
these PCs can be ignored without reducing the amount
of useful information representing the data, since each
PC is now independent of (uncorrelated with) any other
PC.

CVA then separated the objects (samples) into groups
on the basis of the retained PCs and the a priori knowl-
edge of the appropriate number of groupings; 50,51 this step
is achieved by minimizing the within-group variance and
maximiz ing the between-group variance . The a priori

groups here are the known triplicate pyrolysis mass spec-
tra and so do not bias the analysis in any way.

The principle of CVA is similar to that of PCA, but
because the objective of CVA is to maximize the ratio of
the between-group to within-group variance, a plot of the
® rst two canonical variate s (CVs) displays the best two-
dimensional representation of the group separation.

Arti® cial Neural Netw orks. All ANN analyses were
carried out under Microsoft Windows NT 3.51 on an
IBM-compatible PC. Data were normalized prior to anal-
ysis with the use of the Microsoft Excel 4.0 spreadsheet.
The back-propagation (BP) neural network simulation
program used was NeuralDesk (Neural Computer Sci-
ences, Southampton, Hants, U.K.) as previously de-
scribed in Refs. 31, 36, and 52.

The structure of the ANN used in this study to analyze
pyrolysis mass spectra consisted of three layers contain-
ing 159 processing nodes (neurons or units) made up of
the 150 input nodes (normalized averaged pyrolysis mass
spectra), 1 output node (percentage milk adulteration),
and one ``hidden’ ’ layer containing 8 nodes (i.e., a
150 ± 8± 1 architecture; see Fig. 2 for a diagrammatic rep-
resentation). Each of the 150 input nodes was connected
to the 8 nodes of the hidden layer by using abstract in-
terconnections (connections or synapses). Each connec-
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FIG. 2. A neural network consisting of 24 inputs (data for PyMS ac-
tually consisted of 150 inputs/masses) and 1 output node (which rep-
resented the percentage cow milk adulterated in goat or sheep milk)
connected to each other by 1 hidden layer consisting of 8 nodes. In the
architecture shown, adjacent layers of the network are fully intercon-
nected, although other architectures are possible. One of the nodes in
the hidden layer is given in more detail, showing the information pro-
cessing by node. An individual node sums its input (the S function)
from nodes in the previous layer, including the bias ( u ), transforms them
via a ``sigmoidal’ ’ squashing function, and outputs them to the next
node to which it is linked via a connection weight.

tion has an associated real value, termed the weight, that
scales signals passing through it. Nodes in the hidden
layer sum the signals feeding to them and output this sum
to each driven connection scaled by a ``squashing’ ’ func-
tion ( f) with a sigmoidal shape, the function f 5 1/(1 1
e 2 x), where x 5 S inputs. These signals are then passed
to the output node, which sums them; in turn, squashed
by the sigmoidal activation function, the product of this
node is then feed to the ``outside world’ ’ .

In addition, the hidden layer and output node were
connected to a bias (whose activation was always set to
1 1), making a total of 1217 connections, whose weights
were altered during training. Before training commenced,
the values applied to the input and output nodes were
normalized between 0 and 1 1; the input layer was scaled
so that the lowest ion count was set to 0 and the highest
to 1 either (1) globally across the whole mass range or
(2) for each input mass. Finally, the connection weights
were set to small random values (typically between
2 0.005 and 1 0.005).

The algorithm used to train the neural network was the
standard back-propagation. 53± 56 For the training of the
ANN, each input (i.e., normalized averaged pyrolysis
mass spectrum) is paired with a desired output (i.e., the
percentage cows’ milk in either goats’ or ewes’ milk, the
determinand); together these are called a training pair (or
training pattern). An ANN is trained over a number of
training pairs; this group is collectively called the training
set. The input is applied to the network, which is allowed

to run until an output is produced at each output node.
The differences between the actual and the desired out-
put, taken over the entire training set, are fed back
through the network in the reverse direction to signal
¯ ow (hence back-propagation), modifying the weights as
they go. The weights were updated in the batch mode,
while the 11 training patterns were presented in a random
order. This process is repeated until a suitable level of
error is achieved. In the present work, a learning rate of
0.1 and a momentum of 0.9 were used.

Each epoch represented 1217 connection weight up-
datings and a recalculation of the root mean square (rms)
error between the true and desired outputs over the entire
training set [rms error of formation (RMSEF)]. During
training a plot of the error vs. the number of epochs rep-
resents the ``learning curve’ ’ and may be used to estimate
the extent of training. Training may be said to have ® n-
ished when the network has found the lowest error. Pro-
vided that the network has not become stuck in a local
minimum, this point is referred to as the global minimum
on the error surface.

It is known33,36,53,54,57 that neural networks can become
over-trained. An over-trained neural network has usually
learned the stimulus patterns it has seen perfectly but
cannot give accurate predictions for unseen stimuli; i.e.,
it is no longer able to generalize. For ANNs accurately
to learn and predict the concentrations of determinands
in biological systems, networks must obviously be trained
to the correct point. Therefore, during training the net-
work was also interrogated with the test set, and the rms
error between the output seen and that expected was cal-
culated [rms error of prediction (RMSEP)] ; training was
stopped when the error on the cross-validation data was
lowest.

Finally after training, all pyrolysis mass spectra of the
three milk mixtures were used as the ``unknow n’ ’ inputs
(test data); the network then output its estimate (best ® t)
in terms of the percentage cows’ milk adulteration in ei-
ther goat’ s or ewes’ milk.

Pr in cip al Com p on en ts Regr ess ion an d Par tial
Least-Sq uares. All PCR and PLS analyses were carried
out by using the program Unscrambler II Ver. 4.0
(CAMO A/S, Trondheim, Norway) (and see Ref. 48),
which runs under Microsoft MS-DOS 6.2 on an IBM-
compatible PC. Data were also processed prior to analysis
by using the Microsoft Excel 4.0 spreadsheet, run under
Microsoft Windows NT on an IBM-compatible PC.

The ® rst stage was the preparation of the data. This
step was achieved by presenting the ``training set’ ’ as two
data matrices to the program: X , which contains the nor-
malized averaged pyrolysis mass spectra, and Y , which
represents the percentage of the determinand (i.e., cows’
milk). Unscrambler II also allows the addition of ``start
noise’ ’ (i.e., noise to the X data); this option was not
used. Finally, the X data were mean-cente red and scaled
in proportion to the reciprocal of their standard devia-
tions.

The next stage was the generation of the calibration
model; this procedure ® rst requires the user to specify the
appropriate algorithm. The Unscrambler II program has
one PCR algorithm and two PLS algorithms: PLS1,
which handles only one Y variable at a time, and PLS2,
which will model several Y variables simultaneously.48
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FIG. 3. Pseudo 3-D CVA plot based on PyMS data analyzed by GEN-
STAT, showing the relationship between the three types of milk with
varying fat content. The ® rst, second, and third CVs accounted for 76.7,
10.8, and 6.5% (94.0% total) of the total variance , respectively. The
identity and fat content of the milk samples are given in Table I. The
arrows indicate increasing fat content.

Since only one Y variable was to be predicted, the PCR
and PLS1 algorithms were used.

The method of validation used was full cross-valida-
tion, via the leave-one-out method.48 This technique se-
quentially omits one sample from the calibration; the
PCR or PLS model is then re-determined on the basis of
this reduced sample set. The percentage of milk adulter-
ation of the omitted sample is then predicted with the use
of the model. This method is required to determine the
optimal size of the calibration model, in order to obtain
good estimates of the precision of the multivariate cali-
bration method (i.e., to neither under- nor over-® t predic-
tions of unseen data).48,58± 60 Unscrambler also has reason-
ably sophisticated outlier detection methods; although
these were employed, it was not necessary to delete any
of the objects from the calibration models formed.

For selection of the optimal number of principal com-
ponents or PLS factors to use in predictions after the
model was calibrated, the rms error between the true and
desired percentage adulteration over the entire calibration
mode l was calculated for the known training set
(RMSEF) and unknown mass spectra (RMSEP). These
rms errors were then plotted against the number of latent
variables (factors) used in predictions. With the use of
this approach, after calibration, to choose the optimal
number of PCs or PLS factors to use in the prediction,
we used all pyrolysis mass spectra as the ``unknown’ ’
inputs (test data); the model then gave its prediction in
terms of the percentage milk adulteration.

RESULTS AND DISCUSSION

Pyrolysis mass spectra of pure cows’ , goats’ , and
ewes’ milk are shown in Fig. 1. With the exception of
the m/z peaks at 55 and 60, there was little qualitative
difference between these spectra; small quantitative dif-
ferences between the spectra from the different milk spe-
cies were observed. Such spectra readily illustrate the
need to employ multivariate statistical techniques in the
analysis of PyMS data.

The objective of the present study was to quantify the
contamination of either goats’ or ewes’ milk with cows’
milk. It is at least plausible that the pyrolysis mass spectra
of nonvolatile complex bio-materials will be dominated
by masses attributed to their lipids; this is because these
species have relatively low volatility and are therefore
preferentially vaporized when subjected to pyrolysis. To
assess whether the subtle spectral differences between the
three milk species analyzed, as observed in Fig. 1, were
due only to variable fat content, rather than other bio-
chemical characteristics (e.g., such as protein and car-
bohydrate content), we analyzed pure milk samples that
varied in fat content alone by PyMS.

Mixtures of the three pure milks that differed in their
fat content were therefore prepared (see Table I for de-
tails) and analyzed by PyMS. For observation of the re-
lationship between these 33 different samples, each rep-
resented by triplicate spectra, each was coded, by using
this a priori knowledge about which were replicates, to
give 33 individual groups (see Table I) and then analyzed
by canonical variates analysis. The resulting CVA plot is
shown in Fig. 3, where the ® rst, second, and third CVs
accounted for 76.7, 10.8, and 6.5% (94.0% total) of the

total variance, respectively. It can be observed that three
clusters are formed, which are representative of the dif-
ferent milk species irrespective of the different fat con-
tents analyzed. It was therefore obvious that the major
quantitative differences in the m/z values seen in the mass
spectra of the pure milks (Fig. 1) were not due solely to
lipid content; protein, carbohydrate, and other biochem-
ical species were also important. It is noteworthy that
increasing fat content in the milks can also be observed
in the CVA plot (Fig. 3); arrows have been drawn on this
CVA plot that show this feature to be a combination of
the ® rst and second CV. Other studies have shown that it
is also possible to use PyMS to measure the fat content
in cows’ , goats’ , and ewes’ milk; however these ® ndings
are not relevant here and will be elaborated elsewhere
(Goodacre and Kell, paper in preparation).

Qu an ti® cation of the Adulteration of Ewes’ Milk
with Cow s’ Milk. After the collection of the pyrolysis
mass spectra of 0 ± 20% cows’ milk (in 1% steps) in ewes’
milk, the ® rst stage was to look at the relationship be-
tween the pyrolysis mass spectra of these mixtures by
using principal components analysis. PCA is a well-
known method for reducing the dimensionality of mul-
tivariate data while preserving most of the variance;
24,43,46,48 in our pyrolysis mass spectral data this reduction
will be from the 150 m/z values to two principal com-
ponents. The ® rst and second PCs are plotted in Fig. 4
and accounted for 91.6 and 5.4% (96.9% total) of the
total variance, respectively. It was evident that neither PC
alone nor a combination of PC 1 and PC 2 could simply
account for or describe the difference in the amount of
cows’ milk in ewes’ milk. When other PCs were plotted
(data not shown), these also failed to account for the
adulteration; this result was perhaps not surprising given
the large amount of variance (96.9% ) in the ® rst two PCs.
It is likely that PCA was unsuccessful because it relies
on ``unsupervised’ ’ learning and linear (orthogonal)
transformations of the raw multivariate data and therefore
cannot provide the truly best analytical discriminations.
A more elegant approach is to use ``supervised’ ’ learning
methods that employ nonlinear algorithms.

Therefore ANNs were trained, by using the standard
back-propagation algorithm, with the 11 normalized av-
eraged PyMS data from the training sets as the inputs,
scaled across the whole mass range so that the lowest
mass intensity was set to 0 and the highest mass intensity
to 1, and the percentage cows’ milk adulteration (0 ± 20%)
as the output, the latter being scaled between 0 and 20.
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FIG. 4. PCA plot based on PyMS data analyzed by GENSTAT, show-
ing the relationship between ewes’ milk adulterated with between 0 to
20% cows’ milk. The ® rst and second PCs accounted for 91.6 and 5.4%
(96.9% total) of the total variance, respectively. The numbers refer to
the percentage adulteration.

TABLE II. Com par ison of the ar ti® cial neural network calibration
with par tial least-sq uar es, principal com ponents regression , and
multip le linear regression in the d econvolu tion of pyrolysis mass
spectra for determ ining the percentage volume of cow’s m ilk in the
range 0 to 20% mixed in ewes’ m ilk.

Root mean square error between true values and estimates of the
percentage of ewe’s milk adulterationa

ANNsb ANNsc PLS PCR MLR

No. epochsd/factors
RMSEF
RMSEP

60,000
0.02
1.21

100
0.23
2.98

4
0.22
2.77

7
1.30
2.83

Ð
0.00
2.90

For the estimates from PyMS in the test set

Slope
Intercept
Correlation coef® cient

0.90
0.63
0.98

0.89
2 0.85

0.92

0.58
3.30
0.95

0.55
3.85
0.96

0.58
3.02
0.95

a The comparison is of the optimal calibration models as judged by test
set cross-validation.

b The input layer was scaled across the whole mass range so that the
lowest mass was set to 0 and the highest mass to 1.

c The input layer was scaled for each input node so that the lowest mass
was set to 0 and the highest mass to 1.

d Calculated by taking the average of three training sessions.

FIG. 5. The estimates of trained 150 ± 8± 1 neural networks vs. the true
percentage volume of cows’ milk (0 ± 20%) in ewes’ milk. The input
layer was scaled across the whole mass range so that the lowest mass
was set to 0 and the highest mass to 1; the networks were trained by
using the standard back-propagation algorithm, for approximately
60,000 epochs, to the point given in Table II by test set cross-validation.
Open circles represent spectra that were used to train the network, and
closed circles indicate `̀ unknown’ ’ spectra that were not in the training
set. The calculated linear ® t (bold line) and expected proportional ® t
(broken line) are shown.

The effectiveness of training was expressed in terms of
the rms error between the actual and desired network
outputs, and during training the network was interrogate d
with the test set of 10 pyrolysis mass spectra. These rms
errors were used to detect overtraining; that is to say, the
error in the training set decreases, but the error in the test
set increases. It is important not to over-train ANNs since
(by de ® ni tion) the network w ill not generalize
well.33,36,53,54,57 It was found that the minimum rms error
in the test set (1.21) was reached when the rms error of
the training set was 0.02 and optimal training had oc-
curred; this took approximately 6´104 epochs (Table II).
The ANN was then interrogate d with the training and test
sets, and a plot of the network’ s estimate vs. the true
percentage of cows’ milk (Fig. 5) gave a linear ® t (bold
line) that was very close to the expected proportional ® t
(i.e., y 5 x; shown here as a broken line). It was therefore
evident that the network’ s estimate of the quantity of
cows’ milk adulteration in the mixtures was very similar
to the true quantity, both for spectra that were used as
the training set and, most importantly, for the ``un-
known’ ’ pyrolysis mass spectra.

In other studies ANNs were set up with the standard
BP algorithm with the same architecture as the one used
above, except that the input layer was scaled for each
input node so that the lowest mass was set to 0 and the
highest mass to 1. The network was still able to converge,
but took only 102 epochs, compared with 6´104 used
above. However, although these ANNs trained 600 times
faster, they did not generalize as well; after training with
the same test set cross-validation method detailed above,
the rms error in the training set was 0.23% and the rms
error in the test set was now 2.98, compared with 1.21
obtained previously (Table II). ANNs of both topologies
were trained three times, with different random starting
weights, and the same generalization point was found.
This result was reproducible and therefore not due to the
random starting weights’ being set by chance to values
very close to the weights set by the ANNs at the best
generalization point. In a procedure to assess the preci-
sion of the PyMS technique , ANNs were trained and in-
terrogated with the triplicate normalized spectra, and the
precision in terms of a pooled standard deviation was
found to be 0.9 and 1.9 respectively, for the training and

test sets, (the overall standard deviation for all the data
was 1.4).

In further studies, other ``supervised’ ’ learning meth-
ods that employ multivariate linear regression, such as
partial least squares, principal components regression,
and multiple linear regression (MLR), were also applied
with the use of the same training and test sets as used for
the ANN analyses. Again, test set cross-validation was
used so as to assure that the calibration models construct-
ed by PCR and PLS were not over-® tting. Table II also
gives the rms error for the predictions produced by MLR,
PCR, and PLS on both the training and test sets for 0 ±
20% cows’ milk mixed in ewes’ milk. Also detailed in
this table are the slopes and intercepts of the best-® t lines
and correlation coef® cient for these three linear methods
compared with the ANN analyses. It can be seen that
there is very little difference between the predictive pow-
er of MLR, PCR and PLS, although PLS still performs
best with a test set error of 2.77, compared with 2.83 and
2.90 for PCR and MLR, respectively. In addition, these
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TABLE III. Com par ison of ar ti® cial neural network calibration with par tial least-squares, principal com ponents regression , and multip le
linear regression in th e d econvolu tion of pyrolysis mass spectra for determ ining the percentage volume of cows’ m ilk in the range 0 to
20% mixed in goats’ m ilk.

Root mean square error between true values and estimates of the percentage of goats’ milk adulteration

ANNsb ANNsc PLS PCR MLR

No. epochsd/factors
RMSEF
RMSEP

4000
1.20
2.02

100
0.24
1.80

6
0.07
1.47

6
0.70
1.44

Ð
0.00
1.46

For the estimates from PyMS in the test set

Slope
Intercept
Correlation coef® cient

0.99
2 0.40

0.95

0.95
2 0.12

0.96

1.01
2 0.57

0.97

0.97
2 0.16

0.97

1.01
2 0.57

0.97

a The comparison is of the optimal calibration models as judged by test set cross-validation.
b The input layer was scaled across the whole mass range so that the lowest mass was set to 0 and the highest mass to 1.
c The input layer was scaled for each input node so that the lowest mass was set to 0 and the highest mass to 1.
d Calculated by taking the average of three training sessions.

linear regression methods gave very similar results to
ANNs where the input layer was scaled for each input
node. ANNs where the input layer was scaled across the
whole mass range , however, gave best results by a factor
of 2 as judged by the RMSEPs.

Scaling each input node will give each mass equal
weight for formation of the ANN model; in contrast, scal-
ing across the mass range results in the most intense
masses having most in¯ uence over smaller masses. The
fact that the latter models gave best results implies that
there was some noise in the mass spectral data (particu-
larly in m/z values of low intensity) to which the ANNs
scaled across the input mass range were robust but which
the linear regression analyses and ANNs, where each in-
put was scaled individually, must have incorporated into
their calibration models. Furthermore, it has previously
been observed that a small amount of noise in pyrolysis
mass spectral data,36 to which ANNs were robust but
which PLS and PCR incorporated into their calibration
models, gave less accurate predictions for the determi-
nand in three sets of binary mixtures.36 It is likely that if
the masses which contribute noise in the PyMS spectra
were removed, then PLS, PCR, and ANNs (scaled for
each input node) would give more accurate estimates of
ewes’ milk adulteration with cows’ milk. Indeed, variable
selection methods have been applied to these data, and
the removal of masses contributing to noise has resulted
in better predictive power. However, although signi® cant,
this observation will be reported elsewhere (Goodacre et
al., paper in preparation).

Qu an ti® cation of th e Adulteration of Goats’ Milk
with Cow s’ Milk. Samples of 0 ± 20% cows’ milk (in 1%
steps) in goats’ milk were prepared and the 21 mixtures
analyzed in triplicate by PyMS. As detailed above , the
normalized averaged spectra were then split in the train-
ing set (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20% cows’
milk) and test set (1, 3, 5, 7, 9, 11, 13, 15, 17, and 19%)
and analyzed by MLR, PCR, PLS, and two ANNs models
where the input nodes were scaled either across the mass
range or individually.

Table III gives the rms error for the predictions pro-
duced by each of the ® ve methods above on both the
training set (RMSEF) and test set (RMSEP) for 0 ± 20%
cows’ milk mixed in goats’ milk; also detailed in this
table are the slopes and intercepts of the test set best-® t

lines and correlation coef® cient for the test set. It can be
observed that all the linear regression methods gave very
similar predictions, and the RMSEPs were 1.47 for PLS,
1.44 for PCR, and 1.46 for MLR. As observed above,
the ANNs scaled for each mass input trained very quickly
as usual35 Ð typically 102 epochs, compared with 4.103 ep-
ochs for ANNs (40 times quicker) where the input layer
was scaled across the mass range to lie between 0 and 1.
By contrast to results observed when quantifying cows’
milk in ewes’ milk, the predictive power of ANNs scaled
individually on the input layer was slightly better; it was
2.02 RMSEP compared with 1.80 for ANNs scaled across
the mass range. Although all ® ve methods gave very sim-
ilar results, the predictions of the ANNs were in fact
worse than those for MLR, PCR, and PLS. ANNs were
also trained and interrogated with the triplicate normal-
ized spectra, and the precision in terms of a pooled stan-
dard deviation was found to be 0.5 and 2.5, respective ly,
for the training and test sets (the overall standard devia-
tion for all the data was 1.5).

The use of PLS and PCR for the deconvolution of
spectroscopic data is well documented.48 Indeed, studies
comparing multiple least-square s methods as well as the
latent variable PCR and PLS methods 61± 63 have concluded
that the best technique appears to be PLS. Other stud-
ies36,39,64± 67 have concluded that ANNs often give better
predictions than does PLS because ANNs are able to per-
form nonlinear mappings of the inputs to output(s) while
still being able to map the linear ones.

The estimates of calibrated PLS models vs. the true
percentage volume of cows’ milk (0 ± 20%) in goats’ milk
are shown in Fig. 6. It can be observed that the PLS
model’ s estimate of the quantity of cows’ milk adultera-
tion in mixtures with goats’ milk was indeed very similar
to the true quantity, for spectra that were used as both
the training and test sets. As detailed above, test set cross-
validation was used to ® nd the best calibration model,
and this was found to be the case where six latent vari-
ables were used. That optimal calibration occurred with
the use of . 3 latent variables, a phenomenon that has
been seen previously,36,39 which usually implies that there
are nonlinear relationships within the pyrolysis mass
spectral data. It was therefore rather surprising that PLS
gave signi® cantly better results than did either of the
ANNs studied on this dataset.
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FIG. 6. The estimates of calibrated PLS models vs. the true percentage
volume of cows’ milk (0 ± 20%) in goats’ milk. The best calibration
model was formed by using six latent variables and was calculated by
test set cross-validation. Open circles represent spectra that were used
to form the model, and closed circles indicate `̀ unknown’ ’ spectra that
were not in the training set. The calculated linear ® t (bold line) and
expected proportional ® t (broken line) are shown.

TABLE IV. Com par ison of ar ti® cial n eural networ k calibration
with par tial least-sq uar es, principal com ponents regression , and
multip le linear regression in the d econvolu tion of pyrolysis mass
spectra for determ ining the percentage volume of cows’ m ilk in the
range 0 to 5% mixed in goats’ m ilk.

Error between true values and estimates of the percentage of goats’
milk adulterationa

ANNsb ANNsc PLS PCR MLR

No. epochsd/factors
RMSEF
RMSEP

50,000
0.01
0.48

300
0.03
0.54

4
0.07
0.47

10
0.00
0.48

Ð
0.00
0.51

For the estimates from PyMS in the test set

Slope
Intercept
Correlation coef® cient

0.92
0.14
0.94

0.99
0.08
0.94

0.85
0.36
0.94

0.86
0.35
0.94

0.84
0.37
0.94

a The comparison is of the optimal calibration models as judged by test
set cross-validation.

b The input layer was scaled across the whole mass range so that the
lowest mass was set to 0 and the highest mass to 1.

c The input layer was scaled for each input node so that the lowest mass
was set to 0 and the highest mass to 1.

d Calculated by taking the average of three training sessions.

FIG. 7. The estimates of trained 150 ± 8± 1 neural networks vs. the true
percentage volume of cows’ milk (0 ± 5%) in goats’ milk. The input
layer was scaled for each input node so that the lowest mass was set
to 0 and the highest mass to 1; the networks were trained by using the
standard back-propagation algorithm, for approximately 300 epochs, to
the point given in Table II by test set cross-validation. Open circles
represent spectra that were used to train the network, and closed circles
indicate ``unknown’ ’ spectra that were not in the training set. The cal-
culated linear ® t (bold line) and expected proportional ® t (broken line)
are shown.

Low er ing th e Lim it of Detection of Cow s’ Milk
Adulteration in Goats’ Milk. The errors for the best
predictions, for the test set only, of the adulteration of
cows’ milk in either ewes’ or goats’ were 1.21 (Table II;
ANNs scaled across mass range) and 1.44 (Table III;
PCR), respectively. This result indicates that the overall
predictive accuracy of PyMS combined with ANNs was
between 6 1.2% and 6 1.5%. To assess whether PyMS
could be used to detect very low levels of adulteration
( , 1%), we prepared samples containing 0 ± 5% cows’
milk (in 0.25% steps) in goats’ milk and analyzed them
by PyMS.

ANNs were trained with the 11 normalized averaged
PyMS data from the training sets as the inputs, scaled for
each input node so that the lowest mass was set to 0 and
the highest mass to 1, and the percentage cows’ milk
adulteration (0 ± 5%) as the output, the latter being scaled
between 0 and 5. Test set cross-validation found that the
minimum rms error in the test set was 0.54, and this
® gure was reached when the rms error of the training set
was 0.03, which took approximately 3´102 epochs (Table
IV). The ANN was then interrogated with the training
and test sets, and a plot of the network’ s estimate vs. the
true percentage of cows’ milk (Fig. 7) gave a linear ® t
(bold line), which was indistinguishable form the ex-
pected proportional ® t (i.e., y 5 x; shown here as a bro-
ken line); the slope of the best ® t line was 0.99, and the
intercept was 0.08. With the exception of the 1.75%
cows’ milk in goats’ milk mixture, the network’ s esti-
mates for the ``unknow n’ ’ pyrolysis mass spectra in terms
of the percentage cows’ milk adulteration were very sim-
ilar to the true quantity. For assessment of the precision
of the PyMS technique at this lower adulteration range,
ANNs were trained and interrogated with the triplicate
normalized spectra, and the precision in terms of a pooled
standard deviation was found to be 0.3 and 0.8, respec-
tively, for the training and test sets (the overall standard
deviation for all the data was 0.5).

In other studies ANNs were set up by using the stan-
dard BP algorithm with the same architecture as the one
used above, except that the input layer was scaled across
the whole mass range; MLR, PCR, and PLS were also
calibrated with test set cross-validation with the same
training and test sets as detailed above . Table IV gives
the RMSEFs and RMSEPs for 0 ± 5% cows’ milk mixed

in goats’ milk; also detailed in this table are the slopes
and intercepts of the test set best-® t lines and correlation
coef® cient for only the test set. It can be seen that all the
calculated RMSEPs were very similar and fall in the
range between 0.47 and 0.54. Although the ANN where
each input was scaled gives the highest RMSEP (0.54),
this calibration model was taken to be the best because
the slope and intercept were closest to y 5 x, i.e., 0.99
instead of 1 and 0.08 instead of 0, respectively. Likewise,
the other ANNs had signi® cantly better slopes and inter-
cepts than did any of the linear regression methods.

These results show that the predictive accuracy of
PyMS combined with supervised learning methods was
within 6 0.5% when samples containing 0 ± 5% cows’
milk in goats’ milk were analyzed. It is plausible that the
predictive accuracy of 6 0.5% was signi® cantly lower
than the 6 1.2% ± 6 1.5% seen for samples containing 0 ±
20% cows’ milk in goats’ milk, because more samples
per percent were analyzed; that is to say, the 0 ± 20%
range contained only two samples per percent, whereas
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by contrast, the 0 ± 5% range contained ® ve exemplars.
Moreover, as illustrated here, by reducing the range to
0 ± 5% and increasing the number of examples used to
calibrate the PCR, PLS, or ANN models, one can use
PyMS to give excellent predictions for the percentage
adulteration with cows’ milk to , 1% for samples which
they had not seen.

CONCLUSION

PyMS and cluster analysis were used unequivocally to
classify cows’ , goats’ , and ewes’ milk irrespective of
whether the fat content of the milk varied. It can be con-
cluded from this study that the major quantitative differ-
ences in the m/z values seen in the mass spectra of the
pure milks (Fig. 1) were not due solely to lipid content.
Given the very complex nature of milk, this result was
not surprising, and it is certain that these ``biochemical
® ngerprints’ ’ (Fig. 1) also contained a wealth of signi® -
cant information from protein, carbohydrate, and other
biochemical species.

Binary mixtures in the range 0 ± 20% cows’ milk with
either ewes’ or goats’ milk were next analyzed by PyMS.
ANNs and linear regression techniques (MLR, PCR, and
PLS) were employed successfully for the quantitative de-
convolution of these pyrolysis mass spectra. It was found
that each of the methods could be used to provide cali-
bration models that gave excellent predictions for the per-
centage adulteration with cows’ milk between 6 1.2% and
6 1.5% for samples for which they had not been trained.

Further experiments were conducted to detect very low
levels of adulteration for samples containing 0 ± 5% cows’
milk (in 0.25% steps) in goats’ milk. The test set predic-
tive accuracy was now signi® cantly better at 6 0.5%. In-
deed by analyzing this smaller aduleration range, we were
able to use PyMS and ANNs to give excellent predictions
for the percentage adulteration with cows’ milk to , 1%.

Scaling the individual nodes on the input layer of
ANNs signi® cantly decreased the time taken for the
ANNs to learn, compared to scaling across the whole
mass range . These ANNs trained between 40 to 600 times
faster; however, in one case of the three studied, this ap-
proach resulted in signi® cantly poorer generalization for
the estimates of percentage cows’ milk in ewes’ milk.

PyMS is a physico-chemical method which has been
extensively exploited for whole-organism ® ngerprint-
ing.26,68 Other spectroscopic techniques that have also
been used for microbial identi® cation include UV reso-
nance Raman spectroscopy69,70 and Fourier transform in-
frared spectroscopy (FT-IR).71,72 These methods all pro-
duce complex reproducible biochemical ® ngerprints that
are qualitatively distinct for different samples and quan-
titative with respect to target determinands. Indeed FT-IR
has been exploited recently within the food manufacture
industry for the authentication of vegetable oils73 and
fruit purees74; furthermore, Raman spectroscopy has also
been investigated for the analysis of foods.75

The combination of PyMS and ANNs has been shown
previously to be an excellent technique capable of the
exquisite ly sensitive qualitative assessment of the adul-
teration of extra virgin olive oils with various seed
oils.27,28 Here it is shown, for the ® rst time, that PyMS
and supervised learning can be used for the quantitative

assessment of the adulteration of milk. Therefore, in con-
clusion, since any biological material can be pyrolyzed
in this way, the combination of PyMS with supervised
learning may be seen to constitute a rapid, powerful, and
novel approach to the qualitative and quantitative assess-
ment of food adulteration in general.
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