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Raman spectroscopy was investigated for its ability to discriminate
between honey samples from different � oral and geographical ori-
gins. The major vibrational modes in the Stokes Raman spectra
were assigned and could be attributed to the four main sugars found
in the honeys. The chemometric clustering method of discriminant
function analysis indicated that the major differences between the
honeys was due to their botanical origin rather than their country
of origin, and this was con� rmed by arti� cial neural network anal-
yses. We consider the noninvasive nondestructive analysis of honey
by Raman spectroscopy to be an alternative to the laborious and
highly specialized mellisopalynology typing method currently used
to identify the � oral origin of honey.

Index Headings: Raman spectroscopy; Chemometrics; Honey; Au-
thenticity; Botanical origin.

INTRODUCTION

The composition and the manufacture of honey are
regulated by Community Directive 74/409/EEC (OJEC L
221, 12.8.1974). In order to harmonize the common Eu-
ropean market, the European Commission has adopted a
proposal to amend this Directive. According to this
amendment, the name ‘honey’ has to be supplemented by
information referring to the product’s � oral and geo-
graphical origin.

Traditionally, the determination of the botanical origin
of honey has been achieved by analysis of the pollen
(mellisopalynology) present in honey.1,2 This method is
based on the identi� cation of pollen by microscopic ex-
amination, and so requires a very experienced analyst; it
is thus very time consuming and dependent on the ex-
pert’s ability and judgment.3 The development of new
methods that do not depend on expert analysis and po-
tentially subjective opinion is therefore desirable.

Dispersive Raman spectroscopy is a physico-chemical
method that measures the vibrations of bonds within
functional groups by measuring the exchange of energy
with EM radiation of a particular wavelength of light
(e.g., a 780-nm near-infrared diode laser, as conducted
here). This exchange of energy results in a measurable
Raman shift in the wavelength of the incident laser
light.4–6 The Raman effect is, however, very weak be-
cause only 1 in every 108 photons exchange energy with
a molecular bond vibration and the rest of the photons
are Rayleigh scattered (that is to say, scattered with the
same frequency as the incident monochromatic (no) laser
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light). The Raman shift can result in two lines, no 2 nm

and no 1 nm, which are called Stokes and anti-Stokes
lines, respectively. The Stokes Raman shift is consider-
ably stronger than anti-Stokes Raman scattering, and
thus, these are usually collected and can be used to con-
struct a Raman ‘� ngerprint’ of the sample. Because dif-
ferent bonds scatter different wavelengths of EM radia-
tion, these Raman ‘� ngerprints’ are made up of the vi-
brational features of all the sample components. There-
fore, this method will give quantitative information about
the total chemical composition of a honey sample, with-
out its destruction (that is to say, it is totally ‘‘noninva-
sive’’), and produce ‘� ngerprints’ that are reproducible
and distinct for different materials.

Raman spectroscopy has only relatively recently been
investigated as a potential tool for food quality control,
for food compositional identi� cation,7 and for the detec-
tion of adulteration in foodstuffs,8 as well as for basic
research in the elucidation of structural or conformational
changes that occur during processing of foods.9 With ref-
erence to our own studies, we have found that dispersive
Raman spectroscopy with laser excitation at 780 nm has
been very useful for the classi� cation of bacteria,10 iden-
ti� cation of cosmetics,11 and the analysis of on-line fer-
mentations.12,13 The aim of the present study was to in-
vestigate dispersive Raman spectroscopy for the classi-
� cation of honey according to its � oral origin.

MATERIALS AND METHODS

Samples. Initially 801 honey samples were obtained
from various hive sites in seven different EU Member
States. Standard pollen analysis was performed on all
honey samples in order to con� rm their � oral authentic-
ity. Some of the honey samples received contained mul-
tiple pollen types and so were not of uni� oral origin. The
honeys that could not be designated to a pure botanical
origin were precluded from Raman spectroscopic analy-
ses because we did not want to include erroneous honey
assignments that would pollute the validation of this
method. Thirteen con� rmed uni� oral types were thus
provided by 51 samples. These were: acacia (7 samples),
chestnut (9 samples), eucalyptus (4 samples), heather (10
samples), lime (4 samples), rape (5 samples), sun� ower
(4 samples), citrus (2 samples), lavender (2 samples),
rosemary (1 sample), Echium plantagineum (1 sample),
orange (1 sample), and � or di sulla (1 sample) (see Table
I for full details).

Raman Spectroscopy. Spectra were collected using a
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TABLE I. List of the honey samples analyzed.

JRC
sample
number

Botanical
origin

Geographical
origin

JRC
sample
number

Botanical
origin

Geographical
origin

1
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
29

Acacia
Acacia
Lime
Rape
Rape
Heather
Heather
Rape
Chestnut
Acacia
Orange
Sun� ower
Eucalyptus
Sun� ower
Chestnut
Eucalyptus
Fior di sulla
Acacia
Acacia
Chestnut
Acacia
Chestnut
Chestnut
Eucalyptus
Citrus
Chestnut

Germany
Germany
Germany
Germany
Germany
Germany
Germany
Denmark
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Italy
Spain
Spain
France

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54

Rape
Acacia
Lavender
Heather
Sun� ower
Chestnut
Heather
Heather
Lime
Heather
Sun� ower
Lime
Chestnut
Chestnut
Lime
Citrus
Rape
Heather
Heather
Heather
Heather
Echium

plantagineum
Eucalyptus
Lavender
Rosemar y

France
France
France
France
France
France
France
Netherland s
Netherland s
Netherland s
France
Netherland s
Germany
Germany
Germany
Italy
England
England
England
England
England
Portugal

Portugal
Portugal
Portugal

FIG. 1. Stokes Raman spectra of an acacia honey from Germany (sam-
ple 1) and arti� cial honey (see text for details).

Renishaw System 100 dispersive Raman spectrometer
(Renishaw, UK), with a near-infrared 780-nm diode laser
with the power at the sampling point typically at 80
mW.14,15 The instrument grating was calibrated using neon
lines16 and was routinely checked with a silicon wafer
centered at 520 nm and 100% ethanol for the C–C–O
vibration at 880 cm21. A spectrum from each sample was
collected for 60 s using the continuous extended scan (so
that actual collection time was ;6 min), and the spectral
resolution was 6 cm21. In order to reduce � uorescence,
each honey was diluted with distilled water one tenth in
a total volume of 4 mL. These were pipetted into a 4-
mL Supelco vial (Supelco, PA); these were 10 mm in

diameter and made of borosilicate glass. The vial was
placed into a pre-� xed sample holder such that the laser
was focused into the center of the vial (12 mm from the
collection lens). Samples were analyzed in triplicate.

The GRAMS WiRE software package (Galactic Indus-
tries Corporation, NH) running under Windows 95 was
employed for instrument control and data capture. Spec-
tra were collected over 100–3000 cm21 wavenumber
shifts with 1735 data points; therefore, the data binning
was ;1.67 cm21. The data may be displayed as the in-
tensity of Raman photon counts against Stokes Raman
shift in wavenumbers (see Fig. 1 for a typical spectrum).
Prior to chemometric analyses, ASCII data were exported
from the GRAMS WiRE software used to control the
Raman instrument. To account for photon count differ-
ences, the spectra were scaled such that the offset 5 0
and the height of the � rst line (where the laser line is cut
out by the holographic � lter) at 250 cm21 5 1.

Cluster Analyses. Multivariate data (such as that gen-
erated by Raman spectroscopy) consist of the results of
observations of many different characters or variables
(light frequency shifts) for a number of individuals or
objects.17 Each frequency shift (wavenumber) may be re-
garded as constituting a different dimension, such that if
there are n variables (where n 5 1735 measurements)
each object may be said to reside at a unique position in
an abstract entity referred to as n-dimensional hyper-
space. This hyperspace is necessarily dif� cult to visual-
ize, and an underlying theme of multivariate analysis is
thus simpli� cation18,19 or dimensionality reduction, which
usually means that we want to summarize a large body
of data by means of relatively few parameters, preferably
the two or three which lend themselves to graphical dis-
play, with minimal loss of information. Thus the initial



APPLIED SPECTROSCOPY 523

TABLE II. Mean outputs from � ve different 10-4-8 multilayer perceptrons.

Sample (origin)

Botanical origin of honey

Acacia Chestnut Eucalyptus Heather Lime Rape Sun� ower Othera

1 (Acacia)
22 (Acacia)
24 (Chestnut)
35 (Chestnut)
43 (Chestnut)
17 (Eucalyptus)
7 (Heather)

36 (Heather )
39 (Heather )
50 (Heather )
41 (Lime)
5 (Rape)
8 (Rape)

15 (Sun� ower)

0.3
0.9

20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1

0.0
0.0

20.1
20.1

20.1
20.1

1.0
0.8
1.1

20.1
0.4
0.5
0.5
0.0

20.1
20.1
20.1
20.1

20.1
20.1

0.1
0.1
0.1
0.5
0.0
0.2
0.7
0.1

20.1
20.1
20.1

0.1

20.1
20.1

0.0
0.0

20.1
0.2
0.8
0.6
0.1
1.0

20.1
20.1
20.1

0.0

0.0
0.1
0.1
0.0
0.2

20.1
0.3
0.0

20.1
0.1
0.8

20.1
0.0

20.1

0.0
0.0

20.1
20.1
20.1

0.0
20.1
20.1

0.1
20.1
20.1

0.8
0.6
0.2

20.1
20.1
20.1
20.1
20.1

0.1
20.1
20.1
20.1

0.0
20.1

0.0
20.1

1.1

0.2
0.2
0.1
0.3
0.1
0.3
0.1
0.1
0.4
0.0
0.0
0.4
0.5
0.0

a Uni� oral types belonging to citrus, lavender, rosemary, Echium plantagineum, orange , and � or di sulla honeys . This dummy node has been used
previously for analyzing other spectroscopic data (Ref. 41).
Bold 5 winning node .
Underlined 5 correct identity.

stage of the chemometric analyses involved the reduction
of the multidimensional Raman data by principal com-
ponents analysis (PCA).18,20 PCA is a well known tech-
nique for reducing the dimensionality of multivariate data
while preserving most of the variance, and Matlab was
employed to perform PCA according to the NIPALS al-
gorithm .21 Discriminant function analysis (DFA; also
known as canonical variates analysis (CVA)) then dis-
criminated between groups on the basis of the retained
principal components (PCs) and the a priori knowledge
of which spectra were replicates, and thus, this process
does not bias the analysis in any way.22 These types of
analysis fall into the category of ‘‘unsupervised learn-
ing’’, in which the relevant multivariate algorithms seek
‘‘clusters’’ in the data,23 thus allowing the investigator to
group objects together on the basis of their perceived
closeness in the n-dimensional hyperspace referred to
above. These methods were implemented using Matlab
version 5 (The Math Works, Inc., MA), which runs under
Microsoft Windows NT on an IBM compatible PC.

Common Supervised Analysis Methods. When the
desired responses (targets) associated with each of the
inputs (spectra) are known then the system may be ‘‘su-
pervised’’. The goal of supervised learning is to � nd a
model that will correctly associate the inputs with the
targets; this is usually achieved by minimizing the error
between the target and the model’s response (output). 24

A popular method for achieving this is the multilayer
perceptron (MLP) using log sigmoidals as the transfer
functions and standard back-propagation.25–27 All the
ANNs were carried out with a user-friendly neural net-
work simulation program, NeuFrame version 3,0,0,0
(Neural Computer Sciences, Southampton, Hants), which
runs under Microsoft Windows NT on an IBM compat-
ible PC.

To attempt to predict the botanical origin for those hon-
eys, only those honeys that contained enough (.3) sam-
ples were used to classify to a uni� oral variety of honey;
these were acacia (7 samples), chestnut (9), eucalyptus
(4), heather (10), lime (4), rape (5), and sun� ower (4).
One third (14 honeys) of these were chosen randomly as
a test set (JRC sample numbers shown); 1, 22 (acacia);

24, 35, 43 (chestnut); 17 (eucalyptus); 7, 36, 39, 50
(heather); 41 (lime); 5, 8 (rape); and 15 (sun� ower). The
29 other honey samples, including those honeys that con-
tained ,3 samples, were used as a training set. For the
latter, containing citrus, lavender, rosemary, Echium plan-
tagineum, orange, and � or di sulla, these were encoded
in a single node called ‘other � oral origin’ honey.

Using the full original Raman spectra the number of
inputs would be 1735 Raman scatters; because this is so
large with respect to the number of training examples (36
3 3 5 108), in order to obey the parsimony principle,27–29

the number of inputs was reduced by using the � rst 10
principal components, a method we and others have
found to be useful as a preprocessing step to ANNs.30–33

PCA was performed on both the training and test sets,
and the total percentage explained variance was 99.8%.
As 7 uni� oral botanical origins plus one mixed botanical
origin were to be assessed, the output was binary encoded
in 8 nodes (see Table II for details). Various MLP archi-
tectures (ninputs-nhidden-noutput nodes) were employed that dif-
fered in the number of hidden nodes: 10-4-8 , 10-7-8 , 10-
10-8. It was found that in training each MLP to 0.15%
RMSEC (root mean squared error of calibration), all
ANNs gave very similar results; therefore, the 10-4-8
MLP was used, as it was the most parsimonious.

RESULTS AND DISCUSSION

A typical Raman spectrum from one of the German
honeys of acacia botanical origin is shown in Fig. 1. The
most prominent peaks that can be observed are of car-
bohydrate origin,34 and this was perhaps not surprising
because honey consists of ;80 g/100 g of mono- and di-
saccharides (OJEC L 221, 12.8.1974). When arti� cial
honey was made in distilled H2O, comprising (/100 g)
fructose (38.5 g), glucose (31.0 g), maltose (7.2 g), su-
crose (1.5 g), and H2O (21.8 g),35 and analyzed by dis-
persive Raman spectroscopy (Fig. 1), the majority of the
bands observed in the real honey were seen to be attrib-
utable to just the sugar composition found in the honey.
Close visible inspection of the spectrum in Fig. 1 and the
others collected showed very few, if any, prominent extra
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FIG. 2. Stokes Raman spectra of arti� cial honey (80 g/100 g), and the four common sugars found in honey (40 g/100 g), water, and an empty
glass sample carrier.

bands, although some minor additional bands were ob-
served that could arise from the small � oral contribution
(pollen, proteins, and higher sugars, as well as bees’ sa-
liva) also found in honey. Moreover, these may be co-
incident with the sugar vibrations and thus hard to see.

Because there are approximately 20 Raman Stokes
bands that can be attributed to the sugars it is important
to try to allocate each frequency to a particular sugar(s)
and to assign the Raman frequencies to the speci� c Ra-
man vibration modes. Therefore, the four pure sugars
were dissolved in distilled water at 40 g/100 g and ana-
lyzed along with the suitable controls of pure H2O and
an empty glass sample carrier vial. The resulting spectra,
along with that from the arti� cial honey, are shown in
Fig. 2; also shown are the wavenumber shifts of the 20
most prominent bands. The � rst ‘hump’ at around 250
cm21 is ignored because this is due to the � lter cut-off
from the laser, and the ‘peak’ at ;340 cm21 due to � uo-
rescence from impurities in the glass vials is also ignored.
Note, of course, from Figs. 1 and 2 that very little � uo-
rescence is seen in the Raman spectra from the honeys,
and that the contributions from the glass vial and, indeed,
the water are very small.

Table III contains details of the 20 Raman bands seen
and the occurrence and strength of each of these in fruc-
tose, glucose, maltose, and sucrose. The mono- and di-

saccharides, although biologically relatively simple, are
chemically quite complex molecules and have many Ra-
man active bonds.34 However, remembering that glucose
is a 6-membered ring and fructose a 5-membered ring,
while the disaccharide maltose contains two glucose sub-
units and sucrose comprises glucose and fructose, allows,
in consultation with the relevant literature,36–38 assignment
of the Raman bands to speci� c vibrations from the hon-
eys. Full details of these are found in Table III.

Despite these assignments, the complexity and simi-
larity of all 51 spectra was such that the classi� cation (or
clustering) of these spectra would not be possible by sim-
ple visual inspection, and this readily illustrates the need
to employ chemometric techniques for the cluster anal-
ysis of Raman data. The next stage was therefore to use
discriminant function analyses (DFA) to observe the re-
lationships between the honey samples as judged from
their Raman spectra. Because triplicate measurements for
each honey had been made, the 153 spectra that had been
recorded were coded so as to give 51 groups , one for
each honey (see Table I), and the data were analyzed by
DFA as detailed above. The resulting ordination plots of
all 51 honeys (see Table I for identi� ers) are shown in
Fig. 3A. It is clear from this � gure that some structure
can be seen in the data, but what this relates to can only
be seen by plotting the discriminant functions for each
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Table III. Proposed identities and occurrence of the Raman bands.

Raman band
Possible identities of

the vibrationa

Found inb

Fructose Glucose Maltose Sucrose

430 cm21

460 cm21

523 cm21

600 cm21

631 cm21

709 cm21

781 cm21

825 cm21

870 cm21

918 cm21

983 cm21

1074 cm21

1127 cm21

1267 cm21

1368 cm21

1460 cm21

1640 cm21

2893 cm21

2940 cm21

skeletal vibration
skeletal vibration
skeletal vibration
skeletal vibration
ring deformation
skeletal vibration
ring vibration
C–OH stretch
C–O–C cyclic alkyl ethers
CH, COH bend
ring ‘‘breathing ’’
C–O–C cyclic alkyl ethers
C–OH deformation
C–O–C cyclic alkyl ethers
CH bend 1 OH bend
CH2 bend
O–H bend from H2O
CH bend
CH2 bend

11
1
1
2

11
11
1

11
11
1
1

11
2

11
2

11
1
2
1

1
2

11
2
2
2
1
2
2

11
2
1

11
1

11
1
1
1
2

2
11
1
2
2
2
1
2
2

11
2
1

11
1

11
1
1
1
2

2
11
1
1
1
2
2
2
2
1
2
1

11
1

11
1
1
1
1

a From Refs. 34, 36–38.
b Key: 2 absent, 1 medium strength vibration, 11 strong vibration.

of the 51 group means and coding according to � oral
(Fig. 3B) or geographical (Fig. 3C) origins.

The DFA plot labeled with details of where the honey
was produced (Fig. 3C) shows no clustering according to
country of origin. Nor was there any evidence of clus-
tering when lower DFs were plotted (data not shown). A
possible reason that it was not possible to detect the geo-
graphical origin was that the number of representative
samples from each country was too small. For example,
while 15 honeys were supplied from Italy, six different
� oral origins of honey were represented: 5 chestnut, 4
acacia, 2 sun� ower, 2 eucalyptus, 1 orange, and 1 � or di
sulla. It is likely that having this very large (bio)chemical
difference within regions will necessarily mean that it
will be more dif� cult to separate samples between re-
gions, a phenomenon observed when using pyrolysis
mass spectrometry to investigate the geographical origin
of olive oils39 and honeys.40

An obvious question to be asked is ‘‘Is the biochemical
signature similar for honeys produced by bees collecting
nectar from the same � ower?’’ Figure 3B shows the � oral
origin of the honeys and it is clear from this plot that
some evidence of botanical origin of the honeys is pres-
ent. Seven clusters can be seen, which are highlighted in
the � gure. However, this does require the ‘eye-of-faith,’
as knowledge of which honey is from which � oral origin
is needed before the clusters become evident. Moreover,
the clusters do overlap and in some cases not all botanical
origins cluster together; for example, only three of the
� ve honeys of rape � oral origin cluster together (in par-
ticular, sample 46 is very different), and one of the acacia
honeys (sample 2) is very different from the others. This
necessarily means that using simple ‘average’ Raman
spectra to discriminate between the different honeys
would likely be unsuccessful.

Figure 4 shows the baseline-corrected Raman spectra
(using the multipoint linear baseline correction routine in
the GRAMS WiRE software) of two acacia and two rape
honeys; these samples have been chosen because of their
difference in DFA (Fig. 3B, and above text). Since there

was no appreciable background variation or spurious res-
onance-enhanced bands in these spectra (data not shown)
baseline correction was used to attempt to highlight any
differences in the key carbohydrate bands. It can be seen
(Fig. 4A) that JRC sample 2 has an enhancement in the
bands at 460 and 523 cm21 and these can be assigned to
skeletal vibrations in maltose/sucrose and glucose re-
spectively (Table III). For the honey samples of rape � o-
ral origin, JRC sample 46 has reduced band intensities at
870 and 983 cm21, which can be assigned to C–O–C
cyclic alkyl ethers and ring ‘‘breathing’’ from fructose,
respectively (Table III), thus indicating that this sample
might have a lower content of fructose than the other rape
honeys.

Because the interpretation, in terms of the botanical
origin of the honey, of the unsupervised cluster analysis
method of DFA (unsupervised because the class structure
in the DFA were replicates and not origin of honey), used
the knowledge of which plant the honey was made from,
it seems logical to use this a priori knowledge to our
advantage before doing the analysis. Initially, experi-
ments using DFA on a subset of the honeys (see Materials
and Methods section for details of training and test sets)
were calibrated with the a priori knowledge of the � oral
origin of the honeys. However, while the separation of
the botanical variety of the honey was successful for a
training set (as one would expect for the calibration
data), projection of the test set into this space (as detailed
in Ref. 40) was unsuccessful. Therefore, supervised
learning by neural network analysis was conducted as
detailed in the Materials and Methods section. Brie� y,
(1) only those honeys that contained greater than three
samples were used as a uni� oral output node (seven hon-
eys in total; acacia, chestnut, eucalyptus, heather, lime,
and rape or sun� ower), while an eighth output node was
used to classify honeys of other botanical varieties; (2)
because the full original Raman spectra contained 1735
Raman scatters, the number of inputs was reduced by
PCA and PCs 1–10, which explained 99.8% of the total
variance, were employed; (3) the optimal number of hid-
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FIG. 4. Baseline-corrected Stokes Raman spectra of (A) acacia honeys ,
samples 2 and 11, and (B) rape honeys , samples 8 and 46.

FIG. 3. Results of discriminant function analysis on all 51 honeys ; (A)
coding according to JRC sample number (Table I) with triplicate points
shown; the other plots are the means of these DF scores labeled ac-

¬

cording to botanical (B) and geographi cal (C ) origins. For (B) the codes
are: acacia (A), chestnut (C ), citrus (T ), Echium plantagineum (P), eu-
calyptus (E ), � or di sulla (F ), heather (H ), lavender (V ), lime (L),
orange (O), rape (R), rosemary (M ), and sun� ower (S ). For (C ) the
codes are: Denmark (D ), England (E ), France (F ), Germany (G ), Italy
(I ), Netherlands (N ), Portugal (P), and Spain (S ).

den nodes was determined to be 4, because it was the
most parsimonious; and (4) training was conducted � ve
times to 0.15% RMSEC. This process took typically 2–
3 3 103 epochs and in real time took only ;2 min to
train. Table II shows the average of � ve different 10-4-8
MLPs. The correct identity was taken to be the winning
output node that was given the highest score. As can be
seen from this table, 13 of the 14 honeys were classi� ed
correctly and only one of the heather honeys was mis-
identi� ed. Therefore, we believe that honeys of the same
botanical origin have a similar biochemical composition
and that Raman spectroscopy can be used to identify
which � oral type the honey comes from.

In conclusion, this study shows that Raman spectros-
copy is a very useful tool for the rapid, noninvasive anal-
ysis of honey samples. The major vibrational modes in
the Stokes Raman spectra were assigned and could be
attributed to the four main sugars found in the honeys.
Cluster analysis of the spectra with only the knowledge
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of which spectra were replicates indicated that the major
differences between the honeys were due to their botan-
ical origin rather than their country of origin. This was
con� rmed by neural network-based analyses, which cor-
rectly classi� ed 13 of the 14 honeys in an independent,
randomly chosen test set. Finally, we believe that Raman
spectroscopy has great potential as a physico-chemical
method for the noninvasive nondestructive objective
analysis of honey and would be an ideal alternative to
the laborious and subjective mellisopalynology typing
method currently used to identify the � oral origin of hon-
ey.
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