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Curie-point pyrolysis mass spectra were obtained from reference Propionibacterium strains 
and canine isolates. Artificial neural networks (ANNs) were trained by supervised learning 
(with the back-propagation algorithm) to recognize these strains from their pyrolysis mass 
spectra; all the strains isolated from dogs were identified as human wild type P. acnes. This is 
an important nosological discovery, and demonstrates that the combination of pyrolysis mass 
spectrometry and ANNs provides an objective, rapid and accurate identification technique. 
Bacteria isolated from different biopsy specimens from the same dog were found to be 
separate strains of P. acnes, demonstrating a within-animal variation in microflora. The 
classification of the canine isolates by Kohonen artificial neural networks (KANNs) was 
compared with the classical multivariate techniques of canonical variates analysis and 
hierarchical cluster analysis, and found to give similar results. This is the first demonstration, 
within microbiology, of KANNs as an unsupervised clustering technique which has the 
potential to group pyrolysis mass spectra both automatically and relatively objectively. 

INTRODUCTION from P. acnes. The regional distribution of the organism 

Propionibacterium acnes is widely distributed on the adult 
human skin, hair, oropharynx and gastrointestinal tract 
(Willis 1977; Brook and Frazier 1991), and is considered to 
cause skin disorders and acne. The  organism is found on 
the oily areas of the skin such as the scalp and forehead, 
and is present, to a lesser degree, on the drier skin areas 
like arms and legs (McGinley et al. 1978, 1980). Further- 
more, it can be found at all levels of the pilo-sebaceous duct 
and on the skin surface (Holland et al. 1977; Kearney et al. 
1984). 

Harvey et al. (1993) were motivated by the idea that wild 
type human strains of P. acnes might be acquired from dogs 
and used a microdissection technique to investigate the 
flora of canine skin surfaces and hair follicles. They report- 
ed the recovery from seven (63.6%) of 11 dogs of an 
organism with cultural characteristics indistinguishable 
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was similar to that found on man, with higher numbers 
found on the trunk than on the feet. The number of 
organisms recovered and their distribution on the dog were 
consistent with it being part of the normal canine micro- 
flora. I t  was therefore of interest to enquire whether the 
same strains of P. acnes might reside on both human and 
canine hosts. 

Pyrolysis is the thermal degradation of complex material 
in an inert atmosphere or a vacuum. It  causes molecules to 
cleave at their weakest points to produce smaller, volatile 
fragments called pyrolysate (Irwin 1982). A mass spectro- 
meter can then be used to separate the components of the 
pyrolysate on the basis of their mass-to-charge ratio (m/z) 
to produce a pyrolysis mass spectrum, which can then be 
used as a ‘chemical profile’ or fingerprint of the complex 
material analysed. 

Within microbiology, this technique, called pyrolysis 
mass spectrometry (PyMS), has largely been applied to the 
characterization of bacterial systems (for reviews see Meu- 
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zelaar et al. 1982; Gutteridge 1987; Berkeley et al. 1990). 
In particular, because of its high discriminatory ability, 
PyMS has been successfully applied to the inter-strain 
comparison of a wide range of medically-important bac- 
terial species and groups, including Corynebacterium 
(Meuzelaar et al. 1982), Escherichia coli (Goodacre et al. 
1991), Legionella (Kajioka and Tang 1984), mycobacteria 
(Wieten et al. 1981a, b), salmonellas (Freeman et  al. 1990) 
and streptococci (Magee et al. 1991), highlighting the use- 
fulness of the technique in the detection of small differ- 
ences between microbial samples. One of the major 
advantages that PyMS has over other diagnostic methods, 
such as ELISA (Chantler and McIllmurray 1987) and 
nucleic acid probing (Saano and Lindstrom 1990), is that it 
is rapid, both for a single sample and in the (automated) 
throughput of samples. Typical sample time is less than 2 
min. 

Within the last year artificial neural networks (ANNs) 
have been applied successfully to the discrimination of bio- 
logical samples analysed by pyrolysis mass spectrometry 
(Goodacre et al. 1992; Chun et al. 1993; Freeman et al. 
1993). ANNs have also been employed for the identification 
of bacteria by flow cytometry (Boddy and Morris 1993) and 
via biochemical characteristics (Rataj and Schindler 1991). 
This supervised learning technique has also been used 
quantitatively to analyse pyrolysis mass spectra in terms of 
the concentrations of target determinants (Goodacre and 
Kell 1993; Goodacre et al. 1993). ANNs are a well-known 
means of uncovering complex, nonlinear relationships in 
multivariate data (Rumelhart et al. 1986). The relevant 
principle is that one can acquire sets of multivariate data 
using PyMS (e.g. normalized intensities at 150 values of 
m/z) for bacteria whose identities are known, and train 
ANNs using the (known) identities as the desired outputs. 
Once the ANNs are trained they may then be exposed to 
unknown inputs (ix. spectra) and will then immediately 
output the globally optimal best fit to the outputs, in this 
case in terms of which bacteria the unknown spectra best 
portray. 

In  this study we report that the combination of PyMS 
and ANNs of the above type was able rapidly to identify 
propionibacteria isolated from canine skin surfaces, from 
dogs showing no evidence of skin disease, as human wild 
type P. acnes. Furthermore, we investigated the ability of 
Kohonen artificial neural networks (KANNs) to classify 
pyrolysis mass spectra of strains of P .  acnes isolated from 
dogs, using unsupervised learning, and demonstrate that 
results similar to those produced by classical multivariate 
data analysis approaches are obtained. 

M A T E R I A L S  A N D  M E T H O D S  

Bacterial strains and culture medium 
Strains were isolated from the foreheads of two dogs by 
methods previously described (Holland and Roberts 1974 ; 

Puhvel et al. 1975; Harvey et lzl.  1993). Briefly, strains were 
isolated from 6 mm punch samples taken from the forc- 
heads of dogs immediately after euthanasia with intra- 
venous pentobarbitone sodium (Euthatal, Rh6ne Mirieux, 
Dagenham). Samples were immediately placed into anaero- 
bic transport medium. Each was homogenized in a sterile 
tissue grinder with 0.5 ml of nutrient broth. The homoge- 
nate was diluted 1/10 and inoculated on agar medium and 
incubated at 37°C for 5 d in an anaerobic jar fitted with 
cold catalyst and Gaspak (Oxoid). After incubation several 
well-isolated colonies were subcultured to ensure pure cul- 
tures. The canine bacterial isolates were coded Dog 1/1 (A, 
B, C, D, E and F) for strains isolated from dog 1 in the 
first biopsy; Dog l/2 (A, B, C, D, E and F)  in the second 
biopsy. Dog 2 was also sampled twice, and these strains 
were coded Dog 211 (A, B, C and D), and Dog 212 (A). 

The  reference Propionibacterium and human wild type 
strains included: P. acnes NCTC 737, WCN 12/1/81, 
WCN 12/1/93A, 216 Al,  222A and 74B; P. avidum 152 
AXA; and P.  granulosum K4, NCTC 11864, WCN 12/11 
93B and 216 D. 

The  medium used to culture all the Propionibacterium 
strains contained (g 1-'): Tryptone Soya Broth (Oxoid), 
30; yeast extract (Oxoid), 10; agar No. 1 (Oxoid), 10; and 
Tween 80 (Sigma), 10. For pyrolysis mass spectrometry 
strains were cultured anaerobically at 37°C for 5d. 

In addition to the Propionrbarterium genus several other 
bacterial strains representing other genera were also 
analysed by pyrolysis mass spectrometry; Bacillus cereus 
DSM 3 1, Escherichia coli W3110, Klebsiella pneumoniae 
(laboratory strain), Pseudomonas aeruginosa NCIB 8704 and 
Staphylococcus aureus NCTC 6571. These strains were cul- 
tured for 16 h at 37°C aerobically on LabM Blood Agar. 

Sample preparation for pyrolysis mass spectrometry 

Clean iron-nickel foils (Horizon Instruments Ltd, Ghyll 
Industrial Estate, Heathfield, E. Sussex) were inserted, 
with clean forceps, into clean pyrolysis tubes (Horizon 
Instruments), so that 6 mm was protruding from the mouth 
of the tube. After incubation, disposable plastic loops were 
used to remove some organisms from the top of one or 
more well-isolated colonies, avoiding the plate surface. 
These organisms were spread on 5 mm of a protruding foil 
to give a thin uniform surface coating. The samples were 
oven dried at 50°C for 30 min, then the foils were pushed 
into the tube using a stainless steel depth gauge so that they 
were 10 mm from the mouth of the tube. Finally, viton 
'O-rings (Horizon Instruments) were placed on the tubes. 
All bacteria were analysed in quadruplicate. 

Pyrolysis mass spectrometry 

The pyrolysis mass spectrometer used in this study was the 
Horizon Instruments PYMS-2OOX as described by Aries 
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et al. (1986). The sample tube carrying the foil was heated, 
prior to pyrolysis, at 100°C for 5s. The  pyrolysate was gen- 
erated in a vacuum by heating a ferro-magnetic foil carry- 
ing the sample with a 3 s radio-frequency (0.4 MHz) 
current through a pyrolysis coil which surrounds the 
sample-coated alloy foil. The foil and sample heated 
rapidly, within 0.5 s, to the temperature corresponding to 
the Curie-point of the iron-nickel foil. At this temperature, 
530°C, the alloy ceased to exhibit ferro-magnetic properties 
and heating ended ; on cooling below the Curie-point, 
inductive heating resumed, so that the foil-pyrolyser system 
acted as a thermostatic switch maintaining the sample at 
the Curie-point, until current ceased to flow through the 
pyrolysis coil. The pyrolysate then entered a gold-plated 
expansion chamber heated to 150°C, whence it diffused 
down a molecular beam tube to the ionization chamber of 
the mass spectrometer. 

The pyrolysate was bombarded with low energy elec- 
trons (25 eV) producing both molecular and fragment ions 
(because low energy was used the majority carried only a 
single positive charge). Non-ionized molecules were depos- 
ited on a cold trap, cooled by liquid nitrogen. The ionized 
fragments were focussed by the electrostatic lens of a set of 
source electrodes, accelerated and directed into a quadrupo- 
le mass filter. The ions were separated by the quadrupole, 
on the basis of their mass-to-charge ratio, and detected and 
amplified with an electron multiplier. The mass spectro- 
meter scans the ionized pyrolysate 160 times at 0.2 s inter- 
vals following pyrolysis. Data were collected over the m/z 
range 51-200, in one tenth of a mass-unit intervals. These 
were then integrated to give unit mass. Given that the 
charge of the fragment was unity the mass-to-charge ratio 
can be accepted as a measure of the mass of pyrolysate 
fragments. The IBM-compatible PC used to control the 
PYMS-200X was also programmed (with software provided 
by the manufacturers) to record spectral information on ion 
count for the individual masses scanned and the total ion 
count for each sample analysed. 

Data analysis 

T o  remove the effect of sample size differences the data 
from PyMS were normalized to a total ion count of 216. 

Multivariate data analysis. The normalized data were 
then processed with the GENSTAT package (Nelder 1979) 
which runs under Microsoft DOS 5.0 on an IBM- 
compatible PC. This method has been previously described 
by MacFie and Gutteridge (1982) and Gutteridge et al. 
(1985). In essence, the first stage was the reduction of the 
data by principal components analysis (PCA) (Chatfield 
and Collins 1980; Causton 1987; Gutteridge 1987; Flury 
and Riedwyl 1988; Martens and Naes 1989; Everitt 1993), 

which is a well-known technique for reducing the dimen- 
sionality of multivariate data whilst preserving most of the 
variance. Data were reduced by keeping only those prin- 
cipal components (PCs) whose eigenvalues accounted for 
more than 0.1% of the total variance. Canonical variates 
analysis (CVA) then separated the samples into groups on 
the basis of the retained PCs and some a priori knowledge 
of the appropriate number of groupings (MacFie et al. 
1978; Windig et af. 1983). The next stage was the construc- 
tion of a percentage similarity matrix by transforming the 
Mahalanobis' distance between a priori groups in CVA with 
the Gower similarity coefficient S, (Gower 1971). Finally, 
hierarchical cluster analysis was employed to produce a 
dendrogram, using average linkage clustering (Gutteridge et 
al. 1985). 

Supervised learning using back-propagation artificial 
neural networks. All ANN analyses were carried out 
using a user-friendly, neural network simulation program, 
NeuralDesk (version 1.2) (Neural Computer Sciences, Lul- 
worth Business Centre, Nutwood Way, Totton, 
Southampton), which runs under Microsoft Windows 3.1 
on an IBM-compatible PC. T o  ensure maximum speed, an 
accelerator board for the PC (NeuSprint) based on the 
AT&T DSP32C chip, which effects a speed enhancement 
of some 100-fold, permitting the analysis (and updating) of 
some 400000 weights per s, was used. Data were also pro- 
cessed prior to analysis with the Microsoft Excel 4.0 
spreadsheet. 

For training the ANN the inputs were the four normal- 
ized replicate pyrolysis mass spectra derived from the refer- 
ence Propionibacterium spp. and the five bacteria 
representing non-Propionibacterium spp. (Bacillus, Escheri- 
chia, Klebsiella, Pseudomonas and Staphylococcus spp.), and 
were further normalized to lie in the range &l. For the 
outputs, P. acnes strains were coded as 1000, P. avidum as 
0100, P. granulosum as 00 10, and the non-Propionibacterium 
strains as 0001. 

The algorithm used was standard back-propagation 
(Rumelhart et al. 1986), running on the accelerator board. 
This algorithm employs processing nodes (neurons or 
units), connected using abstract interconnections 
(connections or synapses). Connections each have an associ- 
ated real value, termed the weight, that scale signals passing 
through them. Nodes sum the signals feeding to them and 
output this sum to each driven connection scaled by a 
'squashing' function with a sigmoidal shape. This 'squash- 
ing' function f = 1/(1 + e-x), where x = C inputs (see also 
Kell and Davey 1992). 

The training of the network thus consisted of the prep- 
aration of a set of pairs of patterns where one half of the 
pair is input to the network and the other represents the 
known or expected response. The stimulus pattern is 
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applied to the network, which is allowed to run until an 
output is produced at each output node. The differences 
between the actual output and that expected, taken over the 
entire set of patterns are fed back through the network in 
the reverse direction to signal flow (hence back- 
propagation) modifying the weights as they go. This 
process is repeated until a suitable level of error is achieved 
(Rumelhart et al. 1986; Wasserman 1989; Simpson 1990). 
In the present work we used a learning rate of 0.1 and a 
momentum of 0.9. 

The structure of the ANN used in this study consisted of 
three layers containing 162 nodes made up of the 150 input 
nodes (normalized pyrolysis mass spectra), four output 
nodes (representing each of the identities), and one ‘hidden’ 
layer containing eight nodes (150-8-4). Each of the 150 
input nodes was connected to the eight nodes of the hidden 
layer which in turn were connected to the output nodes. In 
addition, the hidden layer and output nodes were connected 
to the bias, making a total of 1244 connections, whose 
weights will be altered during training. Before training 
commenced the input and output nodes were normalized 
between 0 and + 1, and the connection weights were set to 
small random values, except the biases which were set to 
+ 1  (Wasserman 1989). Each epoch (one complete calcu- 
lation in the network) represented 1244 connection weight 
updatings, per training pair, and a recalculation of the root 
mean squared (RMS) error between the true and desired 
outputs over the entire training set. A plot of the average 
RMS error vs the number of epochs represented the ‘learn- 
ing curve’, and was used to estimate the extent of training. 
Training can be said to have finished when the network has 
found the lowest RMS, i.e. what was taken to be the global 
minimum on the error surface. Finally aftcr training, when 
the average error had reached 0.005, the trained ANN was 
interrogated with the spectra from the 68 remaining 
samples (test data) as well as the 64 spectra of the samples 
used in the training set; the network then outputs its esti- 
mate (best fit) in terms of the identities ofthe sample. 

Unsupervised learning with Kohonen artificial neural 
networks. KANNs provide an objective way of classifying 
data through self-organizing networks of artificial neurons. 
The algorithm forms a (self-organizing) map of the input 
data which retains information about the relationships 
between the items (Kohonen 1989; Hecht-Nielson 1990; 
Hertz et al. 1991). Networks were trained by presenting all 
of the neurons in the single layer with a pyrolysis mass 
spectrum (i.e. normalized ion counts in the range 51-200 
m/z), and ascertaining which neuron has weights which 
most closely match the input mass spectral data. The 
weights of the winning neuron and those of its topological 
neighbours were then adjusted to provide an improved fit. 

The entire training data set, comprising 17 averaged nor- 
malized pyrolysis mass spectra derived from the Propi- 
onibacterium spp. isolated from the dogs, was repeatedly 
presented and learnt in this fashion. The size of the neigh- 
bourhood which was updated upon each presentation was 
gradually reduced as training proceeded, as was the size of 
the adjustment made to the weights. By using different 
sized networks it was possible to force the network to group 
the data items into different numbers of groups (Erwin et 
al. 1992). Networks on a square grid of four, nine, 16 and 
25 nodes were used to group the samples. The networks 
were allowed to ‘wrap around’ so that they formed toroidal 
structures; this was in order to avoid the edge effects which 
otherwise tend to corrupt very small networks of this type. 
All experiments were run on a Sun SPARC10, the shortest 
execution time (for the four node network) was 10 s, and 
the longest execution time (for the 25 node network) was 4 
min. The program used was written in the C programming 
language; no attempt was made to optimize the code. 

RESULTS A N D  D I S C U S S I O N  

After the collection of pyrolysis mass spectra the first stage 
was to perform multivariate statistical methods using the 
GENSTAT package to establish the relationships between 
all the strains of propionibacteria. Each of the 11 Propi- 
onibacterium spp. and 17 canine isolates, each represented 
by four replicate spectra, were coded to give 28 individual 
groups; the resulting dendrogram is shown in Fig. 1. In 
this figure it can be seen that at 70% relative similarity the 
bacteria cluster into three groups and they have split 
mainly into the three species of Propionibacterium analysed : 
cluster 1 comprises all the P.  acnes human wild type strains 
and all the strains isolated from dogs, with the exception of 
Dog 1/2 (A); cluster 2 consists of three of the four P. gra- 
nulosum (216 D, K4, and WCN 12/1/93B) strains; finally, 
P. granulosum NCTC 11864 and P. avidum 152 AXA form 
a third cluster. These results indicate that the propi- 
onibacteria strains isolated from dogs are related to human 
wild type P. acnes except for the strain Dog 1/2 (A) which 
failed to cluster with any of the Propionibacterium spp. and 
is an outlier; it was therefore omitted from any further 
analyses. 

The  next stage was to investigate the variation of canine 
propionibacteria flora; therefore, only the bacteria isolated 
from dogs (omitting sample Dog 1/2 (A)) were analysed 
with GENSTAT. The results are displayed as canonical 
variates plots (CVA) (Fig. 2) and as a dendrogram (Fig. 3). 
When the first two canonical variates (Fig. 2a) are plotted, 
displaying 77% of the total variance, three groups can be 
seen, which are also evident in the dendrogram (Fig. 3). 
These are related to the origin of the isolates: group 1 
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Fig. 1 Dendrogram representing the 
relationships between all the 
propionibacterial strains studied, based on 
pyrolysis mass spectrometry data analysed 
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Fig. 2 Ordination plot based on pyrolysis mass spectrometry data 
analysed by GENSTAT showing the relationship between the 
propionibacterial strains isolated from dogs. The first and second 
canonical variates (a) accounted for 76.93% of the total variance, 
and the third (b) accounted for 9.85% (86.78% total). 0, Dog 
l / l ;  0, Dog 1/2; 0, Dog 2/1; ., Dog 2 / 2  
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Fig. 3 Dendrogram representing the 
relationships between the canine isolates, 
based on pyrolysis mass spectrometry data 
analysed by GENSTAT 
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Dog 1 / 1  (C) 
Dog l / l  ( € 1  

Dog 2/1 ( B) 
Dug 2/1 ( D )  

Dog 2/2 ( A )  
Dog 2/1 ( C) 

Group I 1 
Dog 2/1 ( A )  J 
Dog 1/2 ( 6 )  
Dog 1 / 1  ( D )  

Dog 1/2 ( D)  
Dog 1/2 (C) 
Dug 1/2 ( F)  

Group 2 

(open circles) comprises strains from Dog 1/1; group 2 
(closed circles) of Dog 1/2 isolates and Dog 1/1 (D);  iso- 
lates from Dog 2 sampled on both occasions form the third 
group (open and closed squares), Dog 1/1 (E) also clusters 
with this group. When the third canonical variate, which 
accounts for 9.85% of the total variance, is viewed (Fig. 2b) 
only two clusters are observed and groups 1 and 3 coincide. 
This  phenomenon is also reflected in Fig. 3 where the 
branch splitting groups 1 and 3 in the dendrogram occurs 
a t  68% relative similarity compared to the split-off point of 
group 2 from groups 1 and 3 at  47%. CVA results can be 
interpreted statistically to discriminate populations based 
on the 95% tolerance region constructed around each 
population mean by the X-squared distribution on two 
degrees of freedom (Krzanowski 1988). This  area can be 
represented by drawing a circle of radius 2.448 canonical 
variates (CV) units. Therefore, because the group means in 
Fig. 2a are separated by more than 4.9 CV units the propi- 
onibacteria isolated from dogs appear to be three distinct 
strains of P. acnes. 

I t  is not easy, by simple inspection of CVA plots alone 
(Fig. 2), to obtain a correct interpretation of the classi- 
fication structure of the canine isolates and it is necessary 
simultaneously to examine the dendrogram produced by 
G E N S T A T  (Fig.3). In order to remove the somewhat arbi- 
trary nature of the discrimination produced by these 
methods, it would be desirable to have a data analysis tech- 
nique which would ‘automatically’ put the pyrolysis mass 
spectra of bacteria (or any other samples) into groups with 
no need for recourse to a przori information. 

K A N N s  provide the desired automatic grouping of data. 
Initially, networks of four nodes were trained with the 17 
averaged normalized pyrolysis mass spectra of the canine 

isolates. After training the 17 isolates separated into four 
groups (Table 1 and Fig. 4). T h e  canine isolate 1/2 (A) was 
sufficiently different from all the other samples to be placed 
in a group on its own (group I)), and was thus discarded as 
an outlier; this is in agreement with the previous 
G E N S T A T  analyses (Fig. 1). By retraining with larger net- 
works (nine, 16 and 25 nodes), finer distinctions between 
samples were detected. 

Group A, comprising mainly strains from Dog 1, is a 
robust group of isolates which retains its identity, apart 
from isolate 1/1 (A), until the size of the network reaches 
25 nodes when it degrades into five sub-groups A3 to A7. 
This  group contains all the members of group 2 from 
G E N S T A T  analyses (Figs 2 and 3) and also the isolates 
Dog 1/1 (A and F)  and 2/1 (A). Group C from K A N N  

. . . - .  

- . . . . .  
Fig. 4 Topological contour map of groups from Kohonen nets 
trained with pyrolysis mass spectrometry data of the canine 
isolates. . . . ., Groups from 2 x 2 network; - - -, groups from 
3 x 3 network; --, groups from 4 x 4 network; -, groups 
from 5 x 5 network; 1, Dog l / l ;  2, Dog 1/2; 3 ,  Dog 2/1; 4, Dog 
2 / 2 .  Map is correct only in topology 
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Table 1 Groups produced by Kohonen artificial neural networks trained on pyrolysis mass spectral data of the canine isolates 

2 x 2 network 

Group Members* Group Members Group Members Group Members 

3 x 3 network 4 x 4 network 5 x 5 network 

A IA, lD, lF, A’ l D ,  lF, 2C, 
2D, 2E, 2F, 2C, 2D, 2E, 

2F, 3A 3A 
A2 1A 

l D ,  lF, 2C, 
2D, 2E, 2F, 
3A 
1A 

B lB, lC, 4A B’ 1B 1B 
B2 4A 4A 

B3 1c 

3C, 3D 3C, 3D, 1C 3D 
C3 3 c  

C lE, 2B, 3B, C‘ IE, 2B, 3B, CZ lE, 2B, 3B, 

1) 2A Strain Dog 1/2 (A) removed because it was an outlier 

A3 

A4 
A5 
A6 
A’ 

c4 

c5 

C6 

2C, 2E, 2F 

lA, 3A 
1D 
1F 
2D 
1B 
4A 
1c 
lE, 2B 

3 c  
3B 
3D 

* 1, Dog 1/1; 2, Dog 1/2; 3, Dog 2/1; 4, Dog 2/2. 

analyses is also relatively robust (Fig. 4) and mirrors group 
3 that was produced by GENSTAT (Fig. 3); it contains 
the canine isolates 2/1 (B, C and D), 1/1 (E) and 1/2 (B) 
but not strain 2/2 (A) which fell into group B (Table 1). 
This strain grouped with bacteria isolated from dog 2 
sampled on the first occasion when analysed by 
GENSTAT (Fig. 3). The separation of the isolates sampled 
from dog 2 ,  from different biopsies, may well be a useful 
differentiation and demonstrates the potential of KANNs 
to distinguish more finely discriminating features than the 
other linear data analysis techniques that were used. 

Group B contains strains 1/1 (B and C) and 2/2 (A) 
which rapidly degrades (Table 1 and Fig. 4) and is less well 
defined. The membership of isolate 1/1 (C) drifts to group 
B when the network size is nine nodes; this change is due 
to failure of the topological ordering process of the network 
(Kohonen 1989), which may have been caused by the pres- 
ence of distortions in the surface described by the network 
in weight space (Hertz et al. 1991; Erwin et al. 1992). In 
other words, the distribution of the inputs cannot perfectly 
map onto the distribution of the nodes due to the inapprop- 
riate connectivity of the latter. When 16 and 25 nodes were 
used, however, strain 1/1 (C) formed the single member 
group B3. 

KANNs grouped the samples in a similar way to sta- 
tistical techniques. Although KANNs provide no truly 
quantitative information about the similarity of the samples 
within a group, they provide qualitative information about 
the groups present. This information is very useful for clas- 
sification tasks. When the results are presented as a contour 

map (Fig. 4) they are easier to interpret, and provide less 
scope for subjective considerations as concrete boundaries 
between groups are drawn. 

PyMS and multivariate data analysis can be used to 
identify bacteria. The inclusion of suitable reference strains 
which fall into groups of unidentified isolates will allow 
their identification, a technique termed ‘operational finger- 
printing’ (Meuzelaar et al .  1982). This process is often sub- 
jective because it relies on the interpretation of complicated 
CVA plots and dendrograms and the question therefore 
arises as to whether it is possible objectively to identify bac- 
teria from their pyrolysis mass spectra. 

ANNs were therefore trained with normalized ion inten- 
sities from the pyrolysis mass spectra from the training set 
(the three reference Propionibacterium spp. and the non- 
propionibacteria) ; the 16 bacteria, represented by 64 mass 
spectra, were coded at the output nodes as described above. 
The 150-8-4 ANNs were trained using the standard back- 
propagation algorithm, and the effectiveness of training was 
expressed in terms of the average RMS error between the 
actual and the desired outputs ; examples of these ‘learning 
curves’ are shown in Fig. 5 .  Training was stopped after the 
average error had reached 0.005 and we interrogated using 
the pyrolysis mass spectral data from all bacteria from both 
the training and test sets. Training was effected three 
times, using randomized, small initial values for the starting 
weights ; because the three curves were found essentially to 
superimpose, despite the randomized starting connection 
weights, it is clear that training was executed (i.e. the error 
surface in weight space was negotiated) in a rather repro- 
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Fig. 5 The learning curve(s) for neural networks employing the 
standard back-propagation algorithm with one hidden layer 
consisting of eight nodes, and trained to assess the identity of the 
strains isolated from dogs 

ducible and rapid manner. The  actual time taken, using the 
NeuSprint accelerator card, to train to an R M S  error of 
0.005 was only 5-6 min. 

These learning curves (Fig. 5) display some very inter- 
esting neurodynamics; for the first 1000 epochs the average 
error decreased from 0.5 to between 0.015 and 0.02. After 
approximately 170Ck1900 epochs the average error reached 
0.005 and training was stopped. 

When training had ceased (i.e. as determined by the 
attainment of an average error of 0,005 over the entire 
training set) the network was interrogated with the normal- 
ized ion intensities of the pyrolysis mass spectra from the 
training and test sets. Not surprisingly, the network’s esti- 
mate of the bacterial identity of the training set was the 
same as the known identities (Table 2 ) .  The  results of the 
network’s final analysis of the unknown test set (given as 
the average of the outputs for each of the four mass spectra 
replicates) are shown in Table 2. It is clear that all the 
canine isolates are identified non-subjectively as human 
wild type P. acnes, including the outlying strain 112 (A) 
observed in Figs 1 and 4. The  ‘correct’ identification of 
strain 112 (A), typed as P. acnes previously using biochemi- 
cal characteristics (Harvey et al. 1993), is perhaps sur- 
prising as we provided a fourth node of non- 
Propionibacterium spp. for the identification of very diflerent 
isolates and one might have expected some outliers to 
appear there. The  isolate Dog 1/1 (D) was scored as 0.54 at 
the first node on the output layer (denoting identity as P. 
acnes) and 0.47 at the third node (as P.  granulosum). 
Although, the magnitude of these numbers is similar 
because the first node activation is greater than the third its 
identity is taken to be P.  acnes. 

Goodacre and Berkeley (1990) showed that PyMS was 
able to discriminate between bacteria that differed only in 
the presence or absence of antibiotic-resistance plasmids, 
illustrating the high discriminatory power of PyMS ; this 
study also exemplifies this, but more importantly shows 
that isolates taken from the same dog in different specimens 
are separate strains of P. acnes. This demonstrates a within- 
animal variation, which may be because the propi- 
onibacterial microflora of Dog 1 was different in different 
follicles. Alternatively the original strain isolated in the first 
instance may have mutated, or may represent a ‘contami- 
nant’ from the owner, veterinarian or laboratory worker. 
PyMS is a technique which highlights phenotypic differ- 
ences between samples; in order to ascertain the cxact phy- 
logeny of the strains isolated from Dog 1 the homology of 
the DNA or 16s-rRNA of these organisms may have to be 
examined (Austin and Priest 1986). 

Kohonen artificial neural networks, as an objective classi- 
fication technique using unsupervised learning, were com- 
pared with canonical variates analyses and dendrograms 
produced by GENSTAT. So far as we are aware, this is 
the first time that KANNs have been applied to the classi- 
fication of bacteria ; this technique gave results similar to 
those produced by GENSTAT, except that KANNs were 
able to separate isolates from Dog 2 recovered from 
separate biopsy specimens. Furthermore, this classification 
method has the potential to group the pyrolysis mass 
spectra of bacterial (or any other) sample automatically. 

Finally, the confirmation that the canine isolates are P. 
acnes is an important discovery and raises questions regard- 
ing the relationship between man and the dog, particularly 
if P. acnes is a member of the normal canine microflora, as 
seems to be the case (Harvey et al. 1993). The  domcstica- 
tion of the dog and, in more recent times, the increasingly 
close physical relationships between man and the dog may 
have led to anthropozoonotic or zoonotic spread. Whatever 
the case, the organism appears to be well adapted to the 
dog and is not thought to be associated with any canine 
dermatoses (Muller et al. 1989), although this may reflect 
differences in follicular anatomy as much as host-pathogen 
relationships per se. The  ability rapidly to identify these 
bacteria by PyMS and multivariate techniques will inevita- 
bly lead to further investigations to examine these inter- 
esting points. We therefore conclude that the combination 
of PyMS and various types of neural networks provides an 
objective, rapid and accurate discriminatory technique. 
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Table 2 Identity of the bacteria used in the test set and training set as judged by the artificial neural network 

Network's estimate 

Propionibacterium 

Strain acnes avidum granulosum Non-Propionibacterium spp. 

Training set : 
Propionibacterium acnes NCTC 737 1.00 0.00 0.00 0.00 

WCN 12/1/81 1 .00 0.00 0.00 0.00 
WCN 12/1/93A 1.00 0.00 0.00 0.00 
216 A1 1.00 0.00 0.00 0.00 
222A 0.99 0.00 0.01 0.00 
74B 0.99 0.00 0.00 0.00 

P .  avidum 152 AXA 0.00 0.98 0.00 0.01 
P .  granulosum K4 0.00 0.00 1.00 0.00 
P .  granulosum 

NCTC 11864 0.00 0.01 0.99 0.00 
WCN 12/1/93B 0.01 0.00 0.99 0.00 
216 D 0.00 0.00 1.00 0.00 

Bacillus cereus 
Escherichia coli 
Klebsiella pneumoniae 
Pseudomonas aeruginosa 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 

1 .oo 
1 .00 
1 .00 
1.00 

Staphylococcus aureus 0.00 0.00 0.00 1 .00 

1.00 
1 .00 
1 .00 
0.54 
0.99 
0.98 
0.99 
0.93 
1.00 
0.74 
0.90 
1.00 
1 .00 
1 .00 
1.00 
1.00 
0.93 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.01 
0.47 
0.01 
0.00 
0.00 
0.07 
0.00 
0.28 
0.08 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 

0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Zeneca plc. RGH was in receipt of a Clinical Studies Trust 
Fund Award awarded by the British Small Animal Veteri- 
nary Association. 
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