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1 Introduction

Research in the biological sciences field is now moving forward at an un-
precedented rate. Modern technological advances, particularly computational
processing power, but also modern analytical methods, have been embraced
by the life sciences. In combination these have developed to such an extent
that it is now possible to begin to investigate complex systems using pow-
erful techniques that in the past would most likely have been the preserve
of the analytical chemist. There is still a wealth of highly challenging prob-
lems in biology that need to be solved, and this will necessitate the continual
evolution of novel analytical strategies.

Genotyping technology revolutionized the study of biological systems; by
using the polymerase chain reaction to amplify genetic material extracted
from a cell, gel electrophoresis and more recently multiplex genotyping could
be performed to map genetic sequences, and observe genetic differences be-
tween organisms. However, even this highly qualitative approach has yielded
many more questions than it actually answers, since the function of genes
of interest cannot normally be directly inferred from the “static” sequence
blueprint. Thus, within the areas of functional genomics and systems biology
many studies are actually aimed at investigating the organism’s phenotype
directly. The phenotype is defined as the result of the expressed genotype of
the organism and is influenced by the environment which it inhabits. Whilst
genetic analysis can be enlightening, it is often not as informative as phe-
notypic information, and because of this, in microbial research biochemical
analyses have been adopted to measure quantitatively cellular components
such as proteins and metabolites. However, more recently great steps have
been made to introduce rapid spectroscopic approaches to study the pheno-
type.

So, exactly what are biologists interested in understanding about micro-
bial systems? Broad areas of interest include: microbial classification and
identification; mRNA, protein and metabolic profiling; functional genomics;
systems biology; optimization, regulation and understanding of microbial bio-
processes; and more specifically with increased incidence of antibiotic resis-
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tance, the mode of action of hopefully antimicrobial drugs. To extract the
maximum information from these experiments the best approach is to em-
ploy global analysis tools; which often indicates spectroscopic measurements,
from which relevant knowledge can be extracted. This data-mining process
uses mathematical tools to ask questions of the data that have much lower
dimensionality than the spectral data and typically involve quantitative or
categorical modeling. For example, a question might be; “based on the Ra-
man fingerprint I have generated from this group of bacteria, which bands are
discriminatory and allow objective identification?” In addition, many spec-
troscopic methods provide a real insight into the biochemistry of an organism
by conventional interpretation of spectral bands, and these data are far more
easily and rapidly obtained through this route as opposed to that of the
traditional biochemical approach.

There are a wide range of spectroscopic methods encompassing the vi-
brational, nuclear magnetic resonance and hyphenated mass spectrometries
that have been used to great effect on a range of biological problems. The
purpose of this Chapter is to introduce some (micro-)biological applications
for which surface-enhanced Raman scattering (SERS) has been recently em-
ployed. SERS is emerging as a very powerful tool in the biological sciences
due to its excellent sensitivity and ability to quench fluorescence, which can
plague Raman measurements of biological material excited in the visible to
the near-infrared. Specifically we shall discuss, SERS for the characteriza-
tion and identification of micro-organisms, the monitoring of industrial bio-
processes and finally, gene-function analysis.

2 Spectroscopic Characterization of Micro-Organisms

Traditionally, the task of classifying microbes has been performed by a com-
parison of macro- and micromorphological characteristics or by biochemical
tests. In more recent times genomic analysis has been used as a means of
identification or classification and 16S ribosomal RNA sequencing is now the
“gold” standard used for this task [1]. However, there are drawbacks asso-
ciated with all of these approaches. Naturally, comparison of morphology is
not a wholly reliable means of classification; this particular phenotype of an
organism can be repeatedly expressed amongst biochemically diverse species
and therefore is not on its own a suitable means of differentiating between
bacteria [2]. The API system (http://www.biomerieux.com/) is a popular
biochemical method used in routine laboratory analysis, approximately 2000
research publications (since the early 1990s) refer to the use of API. With
API, a series of biochemical tests is applied to an organism cultured in the
laboratory, the response of the organism to these tests is then matched against
a database of possible results to provide identification. Whilst biochemical
detection methods are reliable, they do not always provide conclusive de-
cisions at the species level, whilst strain-level characterization is generally
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impossible and analysis of environmental isolates uncertain. The process it-
self is also very time consuming; cell culturing, running the test and analysis
of results often require several days. The analysis of rDNA also has the same
issues since many steps are involved including cell culturing, DNA extrac-
tion, sequencing and results analysis. In addition, as the 16S rRNA is highly
conserved it is only useful at the species level.

In contrast to these biochemical and molecular techniques another route
has been taken through the use of vibrational spectroscopy to generate “fin-
gerprints” of intact bacterial samples. As far back as 1911, Coblentz suggested
that biological samples could be analyzed by infrared (IR) absorption spec-
troscopy [3]. IR spectroscopy is a vibrational technique that measures the
absorbance of radiation by a sample. The two vibrational techniques of IR
and Raman spectroscopy are useful complementary techniques, since they can
be used to probe a broad range of molecular symmetries [4]. It was IR spec-
troscopy that was first applied to the identification and characterization of
Eubacteriales and Lactobacillus isolates, with data published as early as the
1950s [3, 5]. Despite these early successes the application of IR spectroscopy
to the microbial taxonomy field did not gain popularity. Unfortunately at this
time, the engineering behind spectrometers was still not advanced enough to
provide rapid, sensitive, reproducible and low-cost instrumentation. It was
not until the last quarter of the 20th century that the development of the
interferometer, the microprocessor and powerful wave-transformation algo-
rithms led to a resurgence of literature reporting whole-organism fingerprint-
ing studies using IR technology [6, 7].

Raman spectroscopy is a recent addition to the physicochemical spectro-
scopic technologies that have been applied to the problem of rapid character-
ization and identification of micro-organisms. Although, in 1974 Spiro first
suggested that resonance Raman spectroscopy could have potential for bi-
ological analysis [8], the earliest literature suggesting that Raman had the
capability to be used in categorical analysis of microbes did not come until
the early 1980s, and even then the reports did not go so far as to demonstrate
that this was possible in practice [9, 10, 11]. In the 1990s the first reports of
NIR FT-Raman were published, which examined the chemical nature of both
bacterial and fungal cells, but again did not go so far as to use those data
for discrimination [12, 13]. It was not until the start of this century that
significant work showing the ability of Raman spectroscopy to be used as a
microbial characterization and discrimination tool was reported [14,15,16,17].
These studies showed that Raman spectroscopy at near-infrared frequencies
could be used to characterize bacterial cells at the earliest stages in colony
development. Using Raman spectroscopy, single bacterial cells have also been
analyzed, both conventionally using Raman microscopy [18], and with more
complex laser tweezers systems that can aid the reduction of fluorescence at
NIR wavelengths [19, 20].

The major shortcoming of Raman spectroscopy is that given the weak Ra-
man scattering achieved by many biological samples, the spectral acquisition
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Fig. 1. The typical multivariate analysis methodology applied to the problem of
biological characterization using SERS spectral fingerprints. The underlying theme
is simplification or dimensionality reduction

time can be many minutes. However, enhancement methods such as SERS
will provide a solution to this problem. Several investigations into SERS of
bacteria have been undertaken [21, 22, 23, 24, 25], and more recently it has
been shown that SERS can reliably differentiate between different bacte-
ria [26, 27]. There is also much interest in detecting aerosols of spore-forming
pathogens, with the obvious target being the identification of Bacillus an-
thracis. Preliminary work has already been carried out using SERS for this
purpose and it has been shown that the dipicolinic acid biomarker, common
to all spore-forming pathogens, can be detected [28, 29, 30, 31].

3 Introduction to Multivariate Cluster Analysis

By their very nature SERS spectra are multivariate. That is to say, each
Raman wave number shift measured can be plotted against each other such
that if we measured a meager 100 shifts then a sample can be said to reside
somewhere in 100-dimensional space. Obviously this abstract space is very
hard to visualize (!) and thus the underlying theme of multivariate cluster
analysis is dimensionality reduction of the SERS spectra to a few new com-
ponents that can be easily plotted and the relationship between the spectra
visualized.

In this Chapter we are discussing the application of SERS to the problem
of classification in highly complex biological systems. The major step that
needs to be taken with large sets of multivariate data to achieve this objective,
is a transformation of the original spectral domain into a reduced form that
is both robust and interpretable in terms of the problem being studied.

Whilst there are many chemometric methods that can be applied to mul-
tivariate data (the reader is referred to [32,33,34]), the strategy that we have
adopted for cluster analysis as reported in [35] is depicted in Fig. 1.

Initially, principal components analysis (PCA [36]) is used, which is an
unsupervised method of data reduction where the original data matrix is
projected onto a smaller variable subspace, and the resultant principal-com-
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ponent scores represent a majority of the variance in the data. This can be
represented as:

T = XL , (1)

where T is an n×d matrix of principal-component scores with a magnitude of
d (dependent on the number of PCs to be extracted); X is an n×p matrix of
independent variables (e.g., mean-centered spectra); and L is a p×d loadings
matrix. In the situation where groups of SERS spectra from different bacteria
are separated in the first PC, the loadings matrix from PC1 can be inspected
to ascertain which SERS bands are most important for this separation.

However, often an unsupervised approach is insufficient to separate closely
related bacterial classes based on their complex spectral profiles, and there-
fore one must use supervised analysis that can be used as predictive models.
This involves proposing an a-priori class structure from which a determina-
tive model is derived. One popular supervised method is discriminant func-
tion analysis (DFA [37]), which maximizes the within-group to between-group
ratio (Fisher ratio) to differentiate between classes (groups). This approach
has been used with great success for classification problems involving spec-
tral fingerprinting [38,39,40]. DFA calculates a number of linear discriminant
functions for separating groups by finding the eigenvalues and eigenvectors
of the expression:

W−1B , (2)

where W is the within-sample matrix of sums of squares and crossproducts,
and B is the between-sample matrix of sums of squares and crossproducts. As
DFA is a supervised algorithm that optimizes the Fisher ratio, so as to sep-
arate different classes, it is necessary to avoid overfitting. In overfitting, the
model has learnt the (training) data perfectly but is no longer able to predict
the identity of new (test) data. That is to say it can not generalize. To avoid
this we project test SERS data obtained from fresh cultures of bacteria of
which we know the identity into a previously generated DFA cluster space. If
the test data cocluster with the corresponding training data we are convinced
that our model is valid.

For the identification of large numbers of different bacteria one often needs
to inspect more than just the first 2 or 3 discriminant functions. In our
strategy depicted above (Fig. 1) we reduce this problem by constructing a
dendrogram based on DFA output using hierarchical cluster analysis (HCA).
In this process, we can further summarize the multivariate outputs from DFA
by taking the Euclidean distance between the a-priori group centers in PC-
DFA space to construct a similarity matrix. These distance measures can
then be processed by an agglomerative clustering algorithm to produce a
dendrogram [37]. This can provide more lucid results than those obtained
from plotting discriminant function scores as ordination plots.
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Fig. 2. Typical unprocessed SERS spectra showing an example from each species
of UTI isolates studied. Each spectrum took 10 s to collect and the counts were in
the thousands

4 Identification of Micro-Organisms Using SERS

It is possible to acquire extremely good SERS data from bacterial cells using
minimal preparation. In the examples shown in Fig. 2, which are SERS spec-
tra of urinary tract infection (UTI) isolates, using aggregated citrate-reduced
colloid [41] strong spectral signals were obtained in only 10 s with 785 nm
excitation and ∼ 2mW laser power at the sample. Importantly, these spec-
tral fingerprints also have clear characteristic differences, which show great
promise for application to the problem of bacterial characterization. In fact,
using SERS fingerprints from a large number of UTI clinical isolates (cour-
tesy of Bronglais Hospital, Aberystwyth), it has been possible to define a
categorical model to discriminate between the major causative organisms of
UTI [26].

One of the major benefits of taking a spectroscopic approach to bacterial
characterization is that there is the potential to classify the microbial iso-
late to the subspecies or strain level. This is not possible using conventional
biochemical methods; however, with the sensitivity of SERS it is possible
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Fig. 3. (a) An ordination plot characterizing 7 clinical isolates of Escherichia coli
from urinary tract infections. The items highlighted in bold with an asterisk are
the validation samples. Isolate C31 is massively different from the other isolates,
therefore C31 was extracted and the remaining data analyzed again. This result
(b) clearly demonstrates that SERS can be applied to discrimination of micro-
organisms at the strain level. (c) A composite dendrogram generated by HCA
using the combined PC-DFA space from the training and validation replicates used
to generate the ordination plots in (a) and (b). This representation of the results
shows how the validation replicates fall tightly within the clusters formed from the
training data

to distinguish such closely related strains based on the organism phenotype.
For isolates of Escherichia coli , obtained from patients with UTI, subspecies
classification is shown in Fig. 3. This takes a stepwise approach to classifica-
tion modeling, that is detailed fully in [26], and essentially involves removing
groups from the analysis that are so clearly different that they prevent clear
separation of other classes.

5 Monitoring Industrial Bioprocesses

The ability to control a bioprocess is paramount for product yield optimiza-
tion, and it is imperative that the concentration of the fermentation product
is assessed accurately [42]. Raman spectroscopy has historically been used
to monitor the reaction of chemical processes and it was only a matter of
time before this approach was used to analyze bioprocesses. Whilst chemical
reactions involve few chemical species and vibrational modes more readily
attributable to substrates and products, biological processes are more com-
plex and rarely are vibrations directly related to bioproduct formation. In
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addition, for low-concentration products in a complex milieu the signal from
the analyte of interest is often masked because of the weakness of the Raman
effect, and this has perhaps discouraged analyzts from taking this approach.
However, SERS provides an opportunity for off-line and at-line monitoring
of bioprocesses that is both sensitive for the detection and quantification of
low yield primary and secondary metabolites. Clearly SERS would not be
performed on-line due to the poisonous nature of the silver colloid on the
microbial process.

Our initial work has concentrated on the production of penicillin. In
this industrially important bioprocess, Penicillium chrysogenum fermenta-
tions produce penicillin G as the major secondary metabolite of commercial
interest. In conventional Raman spectroscopy using 785 nm excitation, the
Raman spectra of penicillin G at high concentrations are dominated by the
resonance enhancement of the aromatic ring vibration at 1005 cm−1. By con-
trast, SERS penicillin G spectra, also collected at 785 nm, contained a greater
number of peaks, with a much-improved signal-to-noise ratio and with signifi-
cantly reduced fluorescence. With respect to the quantification of penicillin G
it was shown that Raman spectroscopy could be used to quantify the amount
of penicillin present in broths when relatively high levels of penicillin were
analyzed (> 50mM). By contrast, using simple integration under SERS-en-
hanced peaks excellent quantification of penicillin G from considerably lower
concentrations of the antibiotic were achieved.

6 Gene-Function Analysis

Whole genome sequencing has shown that there are many genes for which the
function is unknown. There is thus a requirement to assign functions to these
orphan genes and one approach to this is through “guilt by association” [43,
44]. By analyzing knockouts of a known function together with those of an
unknown function, cluster analysis on spectroscopic measurements can be
used to infer metabolism classes based on the distances between groups [45].
The approach to this problem in terms of data analysis is the same as for
bacterial characterization; the main differences are in the type of sample
under analysis and the way in which the cluster analyzes are interpreted.

The “metabolic footprint” is a measure of the metabolites in the ex-
tracellular material, such as spent culture media, urine or blood [43, 44].
Spectroscopic fingerprints of such samples are seen as the best method for
determining gene function by an inductive approach (i.e., mining data for
knowledge, rather than testing a hypothesis) [46, 47, 48, 49]. However, de-
tecting small quantitative or qualitative changes in growth media requires
sensitive instrumentation, and therefore mass-spectral techniques have pri-
marily been the method of choice. Consequently, sample preparation and
spectral collection times are many minutes, which can be limiting when large
libraries of knockout mutants need to be profiled. SERS is potentially a more
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Fig. 4. (A) First-derivative SERS spectra (785 nm,∼ 8 mW laser power at the
sample) of depleted haploid yeast-cell culture media from (A) BY4741 Wild type;
(B) Y07047; (C) Y03575; (D) YO5768; (E) Y04889; (F) Y04342. (B) PC-DFA
model using SERS spectra, showing the haploid yeast reference strain and 5 haploid
mutant strains resolved into separate clusters

rapid “holistic” fingerprinting method than MS. The low limit of detection
for SERS measurements also makes the method an ideal candidate for de-
tecting small differences in extracellular metabolites between gene knockout
mutants.

Table 1. Haploid yeast knockout mutant strains used in a SERS metabolic foot-
printing study

Experiment Ref. ID Metabolism descriptor

Reference BY4741 Wild type
35 A, 35D, 35G Y03575 Zinc-finger transcription factor, controls expression of

ADH2, peroxisomal, ethanol, glycerol and fatty acid
genes

36 A, 36D, 36G Y04342 Broad-specificity amino-acid permease, high-affinity
glutamine permease

38 A, 38D, 38G Y04889 Iron homeostasis
40 A, 40D, 40G Y05768 Involved in manganese homeostasis
44 A, 44D, 44G Y07047 A transcriptional repressor for allantoin and GABA

catabolic genes, a negative regulator of multiple nitro-
gen catabolic genes

As a preliminary example, a small subset of the 7000 eukaryotic Saccha-
romyces cerevesiae single-gene knockout mutants (courtesy of Prof. Stephen
G. Oliver, The University of Manchester) are listed in Table 1 and these were
analyzed by SERS. The putative metabolism classes for these mutants sug-
gest that the deleted genes relate to a broad range of biochemical pathways
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within the cell. In Fig. 4a examples of first-derivative SERS spectra acquired
from the metabolic footprint of these samples are shown, with a total spectral
integration time of only 1min for each sample.

Whilst some obvious quantitative differences can be seen between these
spectral fingerprints, for the discovery of the relationships between the wild
type and the various gene knockouts analyzed, it is necessary to take a mul-
tivariate approach using cluster analysis. PC-DFA clearly separates these
mutants from wild type and separate groups were recovered for each of the
knockouts (Fig. 4b). This preliminary result demonstrates the potential for
SERS to be used as a rapid screening technique in gene-function analysis and
will be explored more fully in the future.

7 Concluding Remarks

Raman and SERS spectroscopy clearly presents itself as a highly versatile
tool that provides complex chemical fingerprints from a wide range of biolog-
ical materials. For microbial investigations, these generally require multivari-
ate cluster analysis, or more advanced machine-learning techniques [50], for
clear microbial characterization, in terms of elucidating the relationship be-
tween bacteria, and for robust unequivocal identification of infectious agents.
We have recently demonstrated that SERS has the exquisite sensitivity re-
quired for the classification of micro-organisms and is reproducible enough
for the identification of a wide variety of bacteria [26,27,31]. It is noteworthy
that in our studies we have not just used the “stare and compare” analy-
sis adopted by others, but have employed multivariate methods that show
reproducibility across the full spectral range collected. Finally, we have also
demonstrated single bacterial cell analysis using SERS [27] and that this ap-
proach is reproducible enough to be used for the quantification of microbial
fermentations [51].
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