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We compared the gas chromatography-mass spectrometry (GC-MS) metabolite profiles of mouse

tumour necrosis factor alpha (mTNF-a) secreting Streptomyces lividans TK24 to the non-secreting wild

type and the wild type harbouring the empty pIJ486 plasmid by multi-block principal component

analysis (PCA). The multi-block PCA model successfully identified peaks that were statistically

different between the protein secreting and non-secreting strains, and at the same time also uncovered

the efficiency of intracellular metabolite extraction by an ultrasonic adaptive focused acoustics (AFA)

technique compared to a manual vortex/freeze-thaw method. Fifty-one metabolites were significantly

different between the three biological strains and 17 of these were abundant in the mTNF-a secreting

strain compared to the non-secreting strains. No significant differences in the number of detected

metabolite peaks were observed between the two extraction techniques. However, from the loadings of

the multi-block PCA model, as well as univariate statistical analysis, we observed that the relative peak

response ratios to the internal standard of 10 metabolites were higher for the AFA extraction,

suggesting a more efficient recovery of these metabolites than achieved with the manual vortex/freeze

thaw method.
Introduction

Streptomycetes naturally synthesise and secrete a variety of

secondary metabolites which are extensively used in the agri-

cultural, environmental and pharmaceutical industries.1,2 This

natural ability has since been exploited to develop expression

systems in Streptomyces lividans to enhance the secretion of

heterologous proteins (so-called biopharmaceuticals).3–7

Physiological and genetic factors influencing extracellular

protein secretion are already well described in S. lividans.8–10

However, there are very limited metabolome studies that inves-

tigate heterologous protein biosynthesis and secretion in acti-

nomycetes.11 Such studies, as already described in other

bacteria,1,12,13 could identify biosynthetic bottlenecks or develop

models for the more efficient expression and subsequent

secretion of desirable protein products.

Data acquired from metabolome studies, specifically meta-

bolic profiling where a global and holistic snapshot of the

metabolome is obtained, can be influenced by sample collection

and treatment methodologies.14–16 An accurate measurement of

intracellular metabolites requires: 1) an effective quenching

technique to inhibit metabolic activities and maintain
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physiological metabolic profiles in analysed samples; 2) an

extraction method that allows a high recovery of intracellular

metabolites present in a wide range of metabolite classes; and 3)

an analytical platform for detecting and quantifying metabo-

lites.12,17 Whilst the platforms for metabolite detection and data

analysis may be relatively similar for a range of sample types,

various quenching and extractions techniques are often required

for different sample types where cell structure, metabolic activity

and cell wall integrity can all influence the efficiency of quenching

and extraction procedures.18

Adaptive focused acoustics (AFA) involves the localization of

high frequency acoustics energy on to sample targets by a trans-

ducer. The energy creates rapid cavitation events through the

formation and collapse of bubbles leading to cell and tissue

disruption. Although the general principle of cell lysis is similar

to normal laboratory sonications,19 the main difference is the

operating wavelengths. Generally, sonicators operate at a low

frequency (1 KHz) and long wavelength (100 mm) compared to

1 MHz and 1 mm for AFA.20 This shorter wavelength and higher

frequency allows the energy to be focused at a sample target and

hence prevents the dissipation of sonication energy leading to

heat spots. A controlled shorter wavelength also enables the

energy to traverse sample tubes so that the samples are not in

direct contact with the probe. In addition, the AFA was coupled

to a computerized system that enabled a precise control of the

acoustics frequency, temperature and length of sample treat-

ment. The AFA technique is therefore an isothermal and non-

contact process that has been employed for cells and tissue

disruption to recover target molecules.21
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This study thus compares the efficiency of ultrasonic AFA and

manual vortex/freeze-thaw extraction techniques for compara-

tive metabolite profiling of mouse tumour necrosis factor alpha

(mTNF-a) expression in S. lividans TK24 against the non-

secreting wild type and empty pIJ486 plasmid strains; pIJ486 is

the vector for mTNF-a and so represents an additional control.

Methods

Bacterial growth

Three strains of S. lividans TK24: i) wild type (labelled ‘W’), ii)

empty pIJ486 plasmid (P) and iii) mTNF-a (T)) were grown as

seven biological replicates each in 250 mL Erlenmeyer shake

flasks containing 50 mL phage medium (per litre: 10 g glucose,

5 g tryptone, 5 g yeast extract, 5 g Lab Lemco, 0.74 g

CaCl2.2H2O, 0.5 g MgSO4.7H2O, pH: 7.2) for 72 h at 28 �C

and 300 rpm in a Minitron shaker incubator (INFORS-HT

Bottmingen Switzerland).

Sample preparation

Two replicates from each of the seven fermentation cultures

(5 mL) were quenched in 25 mL 60% aqueous methanol con-

taining 10 mM HEPES (�40 �C). The samples were then

immediately centrifuged at 4000 g for 5 min at �9 �C, superna-

tant removed and the cell pellets snap-frozen in liquid nitrogen

and stored at �80 �C.

Intracellular metabolites from one set of the quenched repli-

cate samples were extracted in 1 mL 100% methanol (�40 �C).

The manual extraction involved three cycles of 1 min vigorous

manual vortex followed by freeze-thaw in liquid nitrogen and

thawing on ice. The second replicate samples were suspended in

1 mL 100% methanol and then transferred into 5 ml glass screw-

cap vials for the ultrasonic adaptive focus acoustics treatment in

a Covaris� S1 single tube system (Covaris Inc., Woburn, MA,

US). The treatment setting was 20% duty cycle, 10 mV intensity,

200 cycles per burst for 2 min per sample and the instrument

chiller was set to 4 �C. All the extracts were centrifuged at 4000 g

for 10 min at �9 �C and the supernatant collected and stored at

�80 �C for GC-MS analysis.

GC-MS

GC-MS analysis was performed as originally described by

Pope et al.22 In short, 900 mL of extract was spiked with 100 mL of

an internal standard solution (0.16 mg mL�1 succinic d4 acid),

vortex mixed for 15 s and lyophilised overnight (HETO VR

MAXI vacuum centrifuge attached to a HETO CT/DW 60E

cooling trap; Thermo Life Sciences, Basingstoke, UK). The

lyophilised samples were chemically derivatised with 20 mg mL�1

O-methylhydroxyamine in pyridine (50 mL) and the mixture

heated at 40 �C for 90 min. N-methyl-N-(trimethylsilyl) tri-

fluoroacetamide (50 mL) was added and the mixture further

heated for 90 min at 40 �C. The derivatised samples were ana-

lysed by GC (Agilent 6890 gas chromatograph; Agilent Tech-

nologies, Wokingham, UK) coupled to a LECO Pegasus III

time-of-flight mass spectrometer, (TOF/MS; LECO, Stockport,

UK). Raw data baseline correction, deconvolution, and metab-

olite identification by searching against an in-house prepared
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library and the NIST/EPA/NIH02 (http://www.nist.gov/srd/

nist1.htm) library, were performed using ChromaTof version

2.12. Processed data were exported in ASCII format as a list of

metabolite peaks and associated peak areas. All data were

normalized to the internal standard (response ratio ¼ peak area

metabolite/peak area internal standard). All data analysis was

performed in Matlab (Mathworks, MA, US).
Data analysis

This study compared two different extraction methods (analyt-

ical factor) and three different strains (biological factor) both of

which will have significant influences on the GC-MS metabolic

profiles. It is also possible that there might be some delicate

interactions between these two factors, e.g., some extraction

methods might be more effective on one strain than the others.

Therefore it is unrealistic to assume that each class forms

a homogeneous distribution in metabolite hyperspace. As sug-

gested by Cattell, when classical factor analysis models like PCA

are applied to heterogeneous samples, the latent factors obtained

will be ‘‘neither clear species differentiators nor optimal indi-

vidual differentiators’’.23 In univariate analysis, such a problem is

normally solved by rearranging data into ‘‘blocks’’ so that in each

block there is only one influential factor to be tested and use

2-way (or N-way if there were more than 2 influential factors)

ANOVA to assess if the influence of each factor is statistically

significant or not. In this study, we extend such a methodology to

multivariate factor analysis, where samples are rearranged into

blocks and subjected to multi-block PCA.

There have been no less than four multi-block PCA models

reported24 and each of them has their own unique properties.25

Nevertheless, all of these models are designed to find the

common trend between different blocks and display it in their

latent factors which are commonly refered to as the ‘super

scores’. In addition, multi-block PCA also provides’ ‘block

scores’ and ‘block loadings’ which are similar to the scores and

loadings in classical PCA except they represent the relative

position of samples and contribution of variables within each

block. Such a characteristic can be very useful to deconvolute

two interacting factors like the problem within this study. Given

two factors, A and B, which have a and b levels respectively; to

examine whether factor A has significant influence on the data,

we can rearrange data into b blocks so that each block contains

all samples at the same level as factor B. By doing so, the influ-

ence of factor B no longer exists in the row space while the

influence of A becomes a common trend between different blocks

which should be modelled by the multi-block PCA (if it does

exist) and can be seen in the super scores plot. Similarly, if we

rearrange data in to a blocks, the influence of factor B should be

revealed in the super scores plot as well. In this study, a multi-

block PCA model called consensus PCA-W (CPCA-W),

a CPCA26 model modified by addition of a normalising block

loadings step, was employed. Before building the model, the data

were first arranged into blocks and then each block was mean

centred and standardised so that each variable has unit standard

deviation.

First, the data were rearranged into two blocks; each block

contained all the samples using the same extraction method

(either manual vortex or AFA). Another way was to rearrange
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data into three blocks; each block contained all the samples of

the same strain (T, W or P). Then we applied CPCA-W on these

rearranged data sets to determine the significant differences

between the extraction methods (from the 3-blocks model) and

biological variability (from the 2-blocks model) within the

metabolic profiles. In addition, like classical PCA, the variables

which contribute to the separation shown in the scores can be

found in the block loadings plot.

Furthermore, we applied the Friedman test (a non-parametric

version of balanced design two-way ANOVA) on each variable

to identify statistically significant variables and examine the

consistency between the variables discovered by CPCA-W block

loadings and those discovered by the Friedman test.

It is important to note that although CPCA-W is still an

unsupervised method, by rearranging data into blocks, we did

make use of some a priori knowledge. Hence it is necessary to

validate the results revealed by the CPCA-W model. Therefore

we tested the robustness of the trend revealed in the CPCA-W

model via a cross-validation coupled with a simple distance

classification according to the following procedure:

(1) Remove one sample (all profiles from a biological repli-

cate) from each block and build a CPCA-W model on the

remaining samples and keep the first 3 PCs (no less than 80% of

overall variations were captured).

(2) Calculate the centre and covariance matrix of each class

(e.g. each strain for two blocks CPCA-W model or each

extraction method for three blocks CPCA-W model) within each

block.

(3) Project the samples being left out in step (1), i.e. the ‘test

samples’, into each of the blocks via the block loadings and

calculate the lack-of-fit errors using eqn (1) for each block and

assign the testing sample to the block with the lowest error.

ei ¼ kx �x$ Pi$P
0

ik (1)

where ei is the lack-of-fit error for block i and Pi is the block

loadings for block i, i¼ 1, 2 and 3 for three blocks model or i¼ 1

and 2 for two blocks model; x is the testing sample.

(4) Using eqn (2), calculate the Mahalanobis distance, d, from

the block scores of the test sample to each class centre within the

block that the test sample was originally assigned to. Next,

predict the class membership of the test sample as the one with

the shortest distance.

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x� �xj

�
,C �1

j ,
�
x� �xj

�0q
(2)

where �x
j
and C�1

j are the centre and the inverse of the covariance

matrix of class j, j¼ 1, 2 and 3 for the three blocks model or j¼ 1

and 2 for the two blocks model.

(5) Repeat steps (1) to (4) and remove a different set of

samples each time for testing until all the samples have been left

out once. Next, calculate the correctly classified rates (CCR) for

block membership and class membership classification.

(6) Compare the CCRs obtained via cross-validation as

described above against a null distribution of CCRs obtained

from a permutation test. The permutation test was performed by

randomly shuffling the order of data, then rearranging the data

into 2 or 3 arbitrary blocks with the same number of samples for

each block as was applied to the original model. The operations
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described from step (1) to (5) were applied to the permuted data,

the CCRs of block and class membership predictions were then

recorded. This test was repeated 1,000 times, each time with

different randomly shuffled data. The CCRs obtained from these

tests formed the null distributions and were used to assess the

significance level of the CCRs obtained from the original data. If

the block and/or class structure is authentic, it can be expected

that the CCRs from the original data will be much better than the

majority of those from the null distribution.

Another potential caveat is that in other applications, like

processing monitoring where CPCA-W has been employed, the

arrangement of the samples are normally in the way that each

row are the same sample analysed by different analytical plat-

forms (blocks). This is not the case in this study when it comes to

dividing the data into 3 blocks. When the data has been divided

into 3 blocks, each row contains 3 different biological samples

coming from 3 different bacterial strains, although subjected to

different extraction processes. However, if the common trend

(e.g., in this case, the separation between classes) between

different blocks is genuine, it is not important to consider

whether the samples within each row come from the same bio-

logical origin or not. Even if they do in fact originate from

different sources, the superscores will still be a linear combina-

tion of different samples coming from that same class. If the

separation between classes is genuine, the separation should still

be revealed no matter which subset of samples from within the

class have been chosen. To prove this, we performed another

permutation test as described below:

(1) A within-class permuted data set was generated by shuffling

the order of samples within each block independently, the shuf-

fling was restricted within each class only, i.e. after the shuffling,

the class structure of each block remained the same. In our case,

the first seven samples were subjected to vortex/freeze-thaw

extraction whilst the next seven were subjected to AFA extrac-

tion.

(2) Another globally permuted data set was generated, also by

shuffling the order of samples within each block, except that this

time the shuffling was performed on the full block, regardless of

the class membership of the samples. Hence the class structure

differs from that previously applied. Nevertheless we still assume

the first seven samples are from one ‘‘artificial class’’ and the next

seven are from a different one.

(3) CPCA-W models of these two permuted data sets respec-

tively were built and the first 3 PCs for each model were retained.

The separation between two classes was then measured by using

two-samples Hotelling’s t2 statistics27 which essentially is the

Mahalanobis distance (see eqn (2)) between two class centroids.

The larger the statistic, the better the two classes are separated.

(4) Repeat step (1) to (3) 100 times and collect the Hotelling’s

t2 statistics obtained from the two permuted data sets and

compare the distributions of the two sets of statistics.

If CPCA-W is not sensitive to the order of samples providing

that they belong to the same class, the Hotelling t2 statistics

obtained from the within-class permuted data set should be

significantly higher than those coming from the globally

permuted data set. In addition, we also want to measure the

stability of the block scores upon permutations of samples since

it will influence the interpretability of the model. Hence for each

CPCA-W model generated for the within class permuted data,
This journal is ª The Royal Society of Chemistry 2010



we performed a Procrustes transformation28 between the block

scores of each block from the permuted data set and those from

the corresponding block of the original data set without the

permutation. The standardised Procrustes distance was then

calculated to measure the dissimilarity between these two sets of

block scores. The standardised Procrustes distance varies from

0 to 1, a perfect match of the two matrices will result in the value

of 0 while if there is nothing in common between them the value

will be 1. For each comparison, 3 distance values were obtained,

one for each block (i.e. P, T and W) respectively. Low Procrustes

distances indicate that the relative position of the samples within

the block scores are relatively unchanged whilst large Procrustes

distances indicate that the pattern revealed in the block scores are

constantly changing upon permutation.
Fig. 1 Principal component plot of all samples showing separation

between the mTNF-a secreting strain and the non-secreting wild type and

empty pIJ486 strains. CP ¼ AFA extraction and pIJ486; CW ¼ AFA

extraction and wild type; CT ¼ AFA extraction and mTNF-a;

MP ¼ manual vortex and pIJ486 plasmid; MW ¼ manual vortex and

wild type; MT¼manual vortex and mTNF-a. The numbers represent the

biological replicates.

Fig. 2 Super scores plot of 3-blocks CPCA-W model. M ¼ manual

vortex; C ¼ AFA extraction.
Results and discussion

This study compares the efficiency of AFA and manual vortex/

freeze-thaw processes for the extraction of intracellular metab-

olites from S. lividans. The efficiency of extraction here refers to

the number and intensity of detected metabolite peaks. A sepa-

rate objective was to see if it was possible to discriminate between

the three strains of S. lividans.

AFA has not been used for metabolite extraction before.

Therefore as an exploratory technique applied to global metab-

olite profiling analysis the AFA technique was optimized by

varying the duty cycle, voltage intensity, cycles per burst and

length of sample treatment. The best extraction setting was

determined by how quickly the bacterial mycelia were completely

disrupted without any residual cellular suspension and with

minimal changes in sample temperature. This was obtained at

20% duty cycle, 10 mV intensity, 200 cycles per burst for 2 min.

On the other hand, the extent of cellular disruption by manual

freeze-thaw extraction was not assessed in this study. However,

several studies have already demonstrated that freeze-thaw in

100% methanol to facilitate cell permeability is the best metab-

olite extraction method in a range of microorganisms.13,16,29 This

is based upon qualitative observations of cells in light micros-

copy, the species of metabolites recovered and the reproducibility

of GC-MS data. Other methods including boiling ethanol, acid

or alkalinic extraction for instance, were reported to be less

appropriate for global metabolite analysis since some metabo-

lites are heat labile or they may not be stable at extreme pH.29,30

Therefore after quenching of metabolism in methanol (which is

also the preferred approach for microbial analyses13,16,29) we

opted to compare manual vortex freeze-thaw extraction in 100%

methanol with the new AFA approach for metabolite extraction.

Averages of 120 metabolite peaks were detected for each strain

and using visible inspection alone there were no noticeable

differences between AFA and manual vortex in terms of the total

numbers of metabolite peaks detected. This suggested that there

were no differences in the types of chemical species that were

recovered using AFA versus manual extraction. The data were

normalized to the peak area of the internal standard and

subsequently standardised (each variable was mean centred and

divided by its standard deviation) prior to multivariate analysis

to ensure that any observed clustering was not biased towards

peaks with high intensities. This is because metabolomics data

are typically characterized by a small number of metabolites at
This journal is ª The Royal Society of Chemistry 2010
high concentrations and a larger number present at lower

concentrations.

Comparison of extraction techniques

A plot of the scores of the first two principal components (Fig. 1)

obtained from classical PCA showed no obvious separation

between the two extraction methods. Instead the samples

appeared to cluster according to biological variations, viz. the

three strain types. Particularly, strains expressing mTNF-a (CT or

MT for AFA and manual extraction respectively) were

discriminated from the non-secreting wildtype (CW and MW)
Analyst, 2010, 135, 934–942 | 937



and empty pIJ486 strains (CP and MP). By contrast, the super

scores obtained from the 3 blocks CPCA-W model (with the

influence of strains suppressed) showed that there was a clear

separation between the two different extraction methods, AFA

and manual vortex/freeze-thaw, in the first PC as shown in Fig. 2.

Furthermore, within group variations were smaller in AFA

extraction than manual vortex, suggesting that AFA was a more

reproducible extraction technique.

Detailed insight into the differences within each strain result-

ing from the different extraction methods can be seen by exam-

ining the block scores plots (Fig. 3a–3c). It can be seen that in the

block scores plot of the T block, that the manual vortex was

particularly irreproducible, which resulted in very large within

group variation. On the other hand, AFA extraction showed

much smaller within group variability across all 3 different

strains suggesting that the extraction performance of AFA is

more consistent than that of manual vortex/freeze-thaw. This is

probably because the AFA is automatically controlled and

therefore sample treatments (temperature and cycle time) were

much more effectively controlled.

Similar to classic PCA, variables (metabolites) that contribute

to the trend shown in the scores plot are revealed in the

respective block loadings plot. However, the drawback of

loadings plots is that they do not provide any statistical

significance assessment. Hence we also applied the Friedman

test to each variable. Since it is a large multiple comparisons

problem (a total number of 120 comparisons) the threshold for

significance of p values is down-adjusted by setting the false

discovery rate (FDR)31 to q < 0.05. Twelve variables were
Fig. 3 Block scores and loadings plots of the three blocks CPCA-W model:

vortex and C ¼ AFA. (a) – (c) are block scores plots of P, T and W blocks re

identified as statistically significant by the Friedman test are highlighted by c
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identified as being significantly different between the two

extraction methods. These variables are highlighted by circles in

the block loadings plot (Fig. 3d–3f). It can be seen that nearly

all of these variables appear on the edge of the block loading

plot which indicates that they contributed significantly to the

separation shown in the block scores plot. Only succinic acid

was consistently extracted with more efficiency by manual

vortex in all 3 blocks and leucine was favoured by manual

vortex at P and T blocks. The remaining significant metabolite

variables were more efficiently recovered by AFA. The relative

peak intensities of all these metabolites along with their tenta-

tive identifications are given in Fig. 4. Overall the AFA tech-

nique achieved up to five times greater peak intensities

compared to that of manual vortex extraction.
Biological variability

In order to identify the differences between the three strains, data

were rearranged into two blocks: AFA block (C block) and

manual vortex block (M black). The same type of analysis was

performed on this two-block data. The super scores plot is shown

in Fig. 5 and the blocks scores along with the block loadings plots

are shown in Fig. 6. Similar to those of the three blocks model,

the separation of strains appeared to be improved in the CPCA-

W super scores plot as well as in the respective block scores plot

compared to the classical PCA. Clear separation between strains

observed in both M and C block scores indicates that even

though AFA has some advantages over manual vortex/freeze-

thaw in terms of extraction efficiency, manual vortex/freeze-thaw
T ¼ mTNF-a secreting; P ¼ empty pIJ486; W ¼ wild type; M ¼ manual

spectively and (d) – (f) are their respective block loadings plots. Variables

ircles.
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Fig. 4 Relative peak intensities of the significant metabolites between the AFA and manual vortex extraction techniques for all three biological strains.

GC peaks that were not positively identified are represented by their retention time (RI followed by time in seconds). CP ¼ AFA extraction and pIJ486;

CW ¼ AFA extraction and wild type; CT ¼ AFA extraction and mTNF-a; MP ¼Manual vortex and pIJ486 plasmid; MW ¼ manual vortex and wild

type; MT ¼ manual vortex and mTNF-a. Relative levels are square roots of actual metabolite peak intensities. Bar heights show the mean of all seven

biological replicates and error bars show standard deviations.

Fig. 5 Super scores plot of 2 blocks CPCA-W model. P ¼ pIJ486,

T ¼ mTNF-a and W ¼ wild type.

Fig. 6 Block scores plots and block loadings plot of the two block

principal component analysis showing the significant metabolites

between the biological strains: P ¼ pIJ486, T ¼ mTNF-a and W ¼ wild

type. M and C block represent manual vortex and AFA respectively.
is still efficient enough for the purpose of strain discrimination in

this study.

The Friedman test identified 51 significant variables at a level

of q<0.05 and they are also highlighted by circles in the loadings

plot (Fig. 6). Among these, 12 metabolites showed significant

difference between the two extraction methods and of these only

4 (of which leucine and succinic acid were positively identified)

were significantly different between the three strains. This

suggests that the majority of metabolites important for differ-

entiating the different strains were largely extraction method

independent. In addition, a much higher number of significant

variables also suggest that the dominating factor in this study is

the difference between strains rather than that between the

different extraction methods. Perhaps, this is the reason that no

clear separation between extraction methods can be seen in the

classical PCA scores plot. The relative peak intensities of these

variables (metabolites) are shown in Fig. 7. The levels of many of
This journal is ª The Royal Society of Chemistry 2010
the metabolites were at least ten fold higher in strains that were

either expressing mTNF-a or contained the empty pIJ486

plasmid compared to the wildtype, reflecting the influence of

mTNF-a biosynthesis and the metabolic burden of harbouring

the empty plasmid.

The highest levels of 17 metabolites (including alanine, leucine,

glycerol, aspartic acid, gamma-aminobutyric acid, glycerol-3-

phosphate, tetradecanoic acid, myo-inositol and sugars) were

detected in mTNF-a expressing strains relative to the non-

secreting strains of the wildtype and pIJ486 in both AFA and

manual vortex extractions. Valine, isoleucine, sucrose, succinic

acid, methionine and proline were higher in the mTNF-a secreting

strain but only by manual vortex extraction while threonine was

favoured by AFA (Fig. 7).
Analyst, 2010, 135, 934–942 | 939



Fig. 7 Relative peak intensities of only the positively identified significant metabolites between the three different S. lividans strains. Fourteen

metabolites show consistent higher levels in mTNF-a strains for both AFA (a) and manual vortex (b) extraction while 10 were favoured in pIJ486

strains. CP¼AFA extraction and pIJ486; CW¼AFA extraction and wild type; CT¼AFA extraction and mTNF-a; MP¼Manual vortex and pIJ486

plasmid; MW¼manual vortex and wild type; MT¼manual vortex and mTNF-a. Relative levels are square roots of actual metabolite peak intensities.

Bar heights show the mean of all seven biological replicates and error bars show standard deviations.

Table 1 Mean prediction results of cross-validation on the original and
randomly shuffled data. The number of correctly classified samples �
standard deviation is shown in the bracket

Original Data Block Class

3 – blocks model 83.3% (35/42) 76.2% (32/42)
2 – blocks model 76.2% (32/42) 90.5% (38/42)
Randomly Shuffled Data
3 – blocks model 33.3% (14.0 � 3.7) 46.4% (19.5 � 3.5)
2 – blocks model 49.1% (20.6 � 3.9) 31.7% (13.3 � 3.7)
Although the observed elevated levels of these metabolites in

mTNF-a secretion strains have not so far been directly linked to

exact pathways of protein expression and secretion in S. lividans,

some of the metabolites have already been reported to perform

essential biosynthetic and regulatory functions in both eukary-

otes and bacteria. Leucine, isoleucine and valine for instance

constitute the branch chain amino acids (BCAA). The metabo-

lism of these amino acids has been show to correlate to protein

biosynthesis.32–34 Leucine up regulates protein synthesis by

stimulating the initiation of mRNA translation.35,36 Similarly,

myo-inositol has been reported to be an essential precursor

molecule for the biosynthesis of streptomycin in Streptomyces

griseus.37

The translocation and secretion of mTNF-a in S. lividans is via

the Sec pathway.10 Sec-dependent secretion is energy driven

mainly from the proton motive force that is generated by the

electrochemical energy potential across the cell membrane and

ATP hydrolysis by SecA.38,39 In this study sugars, glycerol and

glycerol-3-phosphate were up to 50-fold higher in mTNF-a strains

(Fig. 7). These metabolites could therefore be potential energy

sources and at the same time contribute to maintaining a chem-

ical gradient across the membrane in order to drive protein

secretion. In addition, the concentration of many acidic metab-

olites (lactic acid, 3-ureidopropanoic acid, citramalic acid, malic
940 | Analyst, 2010, 135, 934–942
acid, 2-aminoadipic acid, 2-hydroxyglutamic acid, 2-amino-

benzoic acid, glutamic acid and pyruglutamic acid), that could

affect the electrical potential across the membrane especially

when exported into the extracellular growth media, were signif-

icantly lower in mTNF-a strains compared to the non-secreting

strains (Fig. 7).

CPCA-W model validation

The results of cross-validation on the original data and randomly

shuffled data are shown in Table 1. The prediction accuracy from

the original data was much better than that of the randomly

shuffled data for every type of prediction. Among those 1,000
This journal is ª The Royal Society of Chemistry 2010



Fig. 8 The distribution of the Hotelling t2 statistics from the second

permutation test.
tests, there was not a single case that achieved such high

prediction accuracy as was achieved with the original dataset. In

addition, the average CCRs of shuffled data are close to the

expected performance of a pure random classifier (33.3% for

3-class classification and 50% for 2-class classification), sug-

gesting that no significant bias was introduced by rearranging the

data into blocks for CPCA-W.

The results of the second permutation test are presented in

Fig. 8 and 9. From Fig. 8 it is easy to see that the Hotelling’s t2

statistics obtained from the within class permutations (a median

of 23.8) are much higher than those from the global permutation

datasets (a median of 2.2). There are some rare cases in the global

permutation data sets which obtained high Hotelling’s t2 statis-

tics as well. By examining their class labels we found that those

for the permutations were in fact largely correct (10–13 labels out

of 14 were what they were originally suppose to be) hence they

could also be considered as within class permutations. This

proved that the CPCA-W model does not require that samples

within the same row are of the same origin (e.g. same biological
Fig. 9 The distributions of the standardized Procrustes distance taken

from the second permutation test.

This journal is ª The Royal Society of Chemistry 2010
sample). Providing the samples are from within the same class

and the separation between classes is genuine, the order of

samples within each block is not important for the CPCA-W

model to recognise such a separation. In addition, the Procrustes

distances obtained by comparing the within-class permuted data

set with the original data set without any permutation are also

low (Fig. 9). The median distances are 0.28, 0.19 and 0.27 for the

3 blocks respectively. For comparison, the distances obtained by

comparing 2 randomly generated matrices with exactly the same

sized block scores as the original CPCA-W model have the

median of 0.85 (the Null column in Fig. 9). This suggests that the

relative position of the samples block scores is also not sensitive

to the order of samples. Upon appropriate rotation, similar

results can be reached regardless of the order of samples within

each class.
Conclusion

The AFA metabolite extraction is a non-contact technique and

compared to the manual vortex/freeze-thaw method both the

temperature and cycle times are better controlled thus resulting

in more repeatable metabolite extractions and hence more

reproducible data. Although there were no significant differences

between the numbers and species of metabolites detected by the

two techniques, this study demonstrates that the recovery of

intracellular metabolites was more efficient using the AFA

technique for some specific metabolites. Although AFA tech-

nology offers no significant advantage for global metabolite

analysis of S. lividans in this study, it would nevertheless be

particularly useful for metabolite analyses where high

throughput automation is needed. We also identified a list of

specific metabolites that could have potential significance in

protein synthesis and secretion in S. lividans, and these will be

explored further.

Finally, we also demonstrated the ability of the multiblock

PCA methodology to deconvolute two interacting factors and

thus provide a more interpretable model that can clearly identify

the contribution of each factor, even when one of them is not so

obvious in the dataset. This methodology has been rigorously

validated by using two types of permutation tests, thus we believe

that such an approach can be very useful for complicated

metabolic studies.
Acknowledgements

The research leading to the results described in this article was

funded by the European Union Sixth Framework Programme

under grant agreement n� LSHC-CT-2006-037834 (STREP-

TOMICS, http://www.streptomics.org/) and the European

Union funded Integrated Project BIOTRACER (contract

#036272) also under the Sixth Framework Programme. WD and

RG wish to acknowledge the BBSRC and EPSRC for funding of

The Manchester Centre for Integrative Systems Biology.
References

1 I. Borodina, P. Krabben and J. Nielsen, Genome Res., 2005, 15, 820–
829.

2 A. L. Demain and A. Fang, Adv Biochem Eng Biotechnol, 2000, 69,
1–39.
Analyst, 2010, 135, 934–942 | 941



3 C. Binnie, J. Douglas Cossar and D. I. H. Stewart, Trends Biotechnol.,
1997, 15, 315–320.

4 G. F. Payne, N. DelaCruz and S. J. Coppella, Appl. Microbiol.
Biotechnol., 1990, 33, 395–400.

5 C. Pozidis, E. Lammertyn, A. S. Politou, J. Anne, A. S. Tsiftsoglou,
G. Sianidis and A. Economou, Biotechnol. Bioeng., 2001, 72, 611–619.

6 G. Sianidis, C. Pozidis, F. Becker, K. Vrancken, C. Sjoeholm,
S. Karamanou, M. Takamiya-Wik, L. van Mellaert, T. Schaefer
and J. Ann�e, J. Biotechnol., 2006, 121, 498–507.

7 L. Van Mellaert, C. Dillen, P. Proost, E. Sablon, R. DeLeys, A. Van
Broekhoven, H. Heremans, J. Van Damme, H. Eyssen and J. Anne,
Gene, 1994, 150, 153–158.

8 R. Morosoli, S. Ostiguy and C. Dupont, Can. J. Microbiol., 1999, 45,
1043–1049.

9 A. Pandey, A. Shukla and S. K. Majumdar, African Journal of
Biotechnology, 2005, 4, 909–910.

10 K. Schaerlaekens, E. Lammertyn, N. Geukens, S. De Keersmaeker,
J. Ann�e and L. Van Mellaert, J. Biotechnol., 2004, 112, 279–288.

11 B. Kammerer, R. Kahlich, S. Laufer, S. M. Li, L. Heide and
C. H. Gleiter, Anal. Biochem., 2004, 335, 17–29.

12 D. B. Kell, M. Brown, H. M. Davey, W. B. Dunn, I. Spasic and
S. G. Oliver, Nat. Rev. Microbiol., 2005, 3, 557–565.

13 S. G. Villas-Boas, J. Hojer-Pedersen, M. Akesson, J. Smedsgaard and
J. Nielsen, Yeast, 2005, 22, 1155–1169.

14 W. B. Dunn, Phys. Biol., 2008, 5, 011001.
15 S. G. Villas-Boas, S. Mas, M. Akesson, J. Smedsgaard and J. Nielsen,

Mass Spectrom. Rev., 2005, 24, 613–646.
16 C. L. Winder, W. B. Dunn, S. Schuler, D. Broadhurst, R. Jarvis,

G. M. Stephens and R. Goodacre, Anal. Chem., 2008, 80, 2939–2948.
17 R. Goodacre, J. Exp. Bot., 2005, 56, 245–254.
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