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Abstract Metabolic profiling of Pseudomonas fluores-

cens SBW25 and various mutants derived thereof was

performed to explore how the bacterium adapt to changes

in carbon source and upon induction of alginate synthesis.

The experiments were performed at steady-state conditions

in nitrogen-limited chemostats using either fructose or

glycerol as carbon source. Carbon source consumption was

up-regulated in the alginate producing mutant with inacti-

vated anti-sigma factor MucA. The mucA- mutants (also

non-alginate producing mucA- control strains) had a higher

dry weight yield on carbon source implying a change in

carbon and energy metabolism due to the inactivation of

the anti-sigma factor MucA. Both LC–MS/MS and GC–

MS methods were used for quantitative metabolic profiling,

and major reorganization of primary metabolite pools in

both an alginate producing and a carbon source dependent

manner was observed. Generally, larger changes were

observed among the phosphorylated glycolytic metabolites,

the pentose phosphate pathway metabolites and the

nucleotide pool than among amino acids and citric acid

cycle compounds. The most significant observation at the

metabolite level was the significantly reduced energy

charge of the mucA- mutants (both alginate producing and

non-producing control strains) compared to the wild type

strain. This reduction was caused more by a strong increase

in the AMP pool than changes in the ATP and ADP pools.

The alginate-producing mucA- mutant had a slightly

increased GTP pool, while the GDP and GMP pools were

strongly increased compared to non-producing mucA-

strains and to the wild type. Thus, whilst changes in the

adenosine phosphate nucleotide pool are attributed to the

mucA inactivation, adjustments in the guanosine phosphate

nucleotide pool are consequences of the GTP-dependent

alginate production induced by the mucA inactivation.

This metabolic profiling study provides new insight into

carbon and energy metabolism of the alginate producer

P. fluorescens.

Keywords Pseudomonas fluorescens � Metabolic

profiling � Mass spectrometry � Alginate synthesis �
Anti-sigma factor MucA

1 Introduction

The polysaccharide alginate is composed of mannuronic

acid and its C-5 epimer guluronic acid. Although, industrial

production of the polymer is based on raw materials from

seaweed, several bacteria also produce alginate and they

are interesting producer organisms of polymannuronic

acid. Polymannuronic acid can be used to tailor-make
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alginate by post-synthesis enzymatic epimerase treatments

(Rehm 2010), and thus studies of bacterial alginate syn-

thesis are of importance for understanding and potential

improvement of the bacterial alginate production process.

Twenty-four genes have so far been found to be involved in

alginate biosynthesis, of which 12 of the 13 structural

genes are clustered in one operon under the control of a

single promotor PalgD (Hay et al. 2010). The first gene in

this operon is the GDP mannose dehydrogenase algD. The

13th structural gene algC, encodes phosphomannomutase,

and is located outside the alg operon under the control of a

separate promotor. Biosynthesis of alginate starts with

conversion of fructose-6-phosphate (F6P) to mannose-6-

phosphate (M6P) by AlgA, before further conversion to

mannose-1-phosphate (M1P) by AlgC. M1P is then con-

verted by the bifunctional enzyme AlgA to GDP-mannose

(GDP-M), before GDP-M is further oxidized by AlgD to

GDP-mannuronic acid (GDP-Mu), the direct precursor for

polymerization. The remaining 10 structural genes take

part in polymerization and modification of the polymer (a

schematic overview of the biosynthesis of alginate along-

side central metabolic pathways are given in Figs. 5 and 6).

Several regulatory genes have also been identified to be

involved in alginate biosynthesis, e.g. alginate synthesis is

controlled by the anti-sigma factor MucA that binds the

sigma factor AlgU preventing transcription of genes

involved in alginate production (Martin et al. 1993;

Schnider-Keel et al. 2001). Hence, wild-type Pseudomonas

fluorescens does not produce alginate, whilst a mucA

deficient mutant will. In fact mucA mutation is frequently

associated with the mucoid phenotype of clinical Pseudo-

monas aeruginosa strains isolated from cystic fibrosis

patients (Hassett et al. 2009). However, mucA deletion is

expected to have other effects on P. fluorescens than ini-

tiation of alginate production. The reasons for this expec-

tation is that AlgU is a global stress response sigma factor

regulating several systems (Firoved and Deretic 2003).

Metabolomics, the comprehensive analysis of metabo-

lite pools, can be very powerful for understanding metab-

olism in general (Villas-Boâs and Bruheim 2007; Wentzel

et al. 2012), and for enhancing synthetic biology processes

(Ellis and Goodacre 2012). However, when measuring

many metabolites simultaneously one is faced with par-

ticular challenges due to the wide physiochemical proper-

ties of the different metabolite classes, ranging form

hydrophilic and highly charged to hydrophobic metabo-

lites. In addition, biological extracts might be quite com-

plex and contain thousands of metabolites present at a wide

range of concentrations. Mass spectrometry (MS) has

become one dominant technology for detection and quan-

tification of metabolites, and MS detection is especially

sensitive and selective when hyphened to gas or liquid

chromatography (GC and LC). For characterization of the

hundred most abundant metabolites in an extract at least

two to three targeted GC–MS and LC–MS methods need to

be applied (van der Werf et al. 2007). Alternatively, non-

targeted approaches using high mass accuracy MS instru-

mentation can be used, and several thousand metabolite

features are usually detected. However, it is a tedious task

to determine the identity of even the most abundant masses

as there can be many metabolites with monoisotopic

masses within the mass accuracy limits of the instrument.

There are also many examples of metabolites with the same

stoichiometric formula, thereby making a chromatographic

step using metabolite standards necessary for exact iden-

tification (Sumner et al. 2007). Therefore, quantitative

targeted methods are preferred as they yield data that can

readily be interpreted in a biological context (Lu et al.

2008; Nielsen and Oliver 2005).

A metabolic profiling experiment consists of several

steps of which the analytical GC–MS/LC–MS step is pre-

ceded by a sample preparation stage. This is also a critical

step for a successful outcome of a metabolite profiling

experiment (Villas-Boâs and Bruheim 2007). For microbial

and cell culture systems many metabolites have a rapid

turnover implying that the quenching of the metabolism

should occur in less than a second. This is technically

challenging and the most frequently used quenching solu-

tion is cold (i.e., \-40 �C) methanol–water solution, but

acids have also been used. At this stage, it is preferable to

separate intact biomass from the medium. However, it has

been difficult to develop quenching protocols that leave the

cells intact thereby preventing metabolite leakage (van

Gulik 2010; Winder et al. 2008). The latest modification of

the yeast quenching method, lately adjusted to Pichia

pastoris, reports no leakage prior to the extraction step

(Canelas et al. 2008; Carnicer et al. 2012), but this protocol

does not prevent leakage of metabolites when applied to

bacterial cells. Differential approaches where the quenched

cell suspension is compared to the cell free supernatant

control have been introduced in order to check for leakage

(Winder et al. 2008). By contrast, rapid filtration is fre-

quently used for analysis of metabolite groups with longer

turnover rates, e.g. amino acids and non-amino organic

acids (Meyer et al. 2010). Nevertheless, the metabolomics

methodologies are continuously developing, in parallel

with metabolite profiling reports giving new and interesting

knowledge about the different biological systems under

study (Kvitvang et al. 2011; Lien et al. 2012).

Pseudomonas bacteria have not been subjected to many

metabolome studies even though this bacterial genus rep-

resents important human pathogens (P. aeruginosa), is

used as cell factory (P. putida), and as biocontrol agent

producers and plant commensals (P. fluorescens). Behrends

and co-workers used an NMR-footprinting approach and

reported that MucA modulates osmotic stress tolerance in
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P. aeruginosa (Behrends et al. 2010). Planktonic and bio-

film modes of growth of P. aeruginosa has also been

compared by NMR footprinting and fingerprinting, and

chemical differences between these two types of cells have

been reported (Gjersing et al. 2007). Frimmersdorf and co-

workers used GC–MS and reported that metabolite pat-

terns, not unexpectedly, were defined by growth condition

but that the core metabolism P. aeruginosa was not that

strongly influenced by growth phase, carbon source or

genetic background (both WT and mucoid strains were

analyzed) (Frimmersdorf et al. 2010). The probably most

comprehensive metabolome study of any Pseudomonas

species to date was performed by van der Werf et al.

(2008). They used two GC–MS methods and one LC–MS

method to explore the metabolome of P. putida grown on

four different carbon sources.

Here we report a quantitative metabolic profiling study

comparing an alginate producing P. fluorescens mucA-

strain with several closely related non-producing strains. In

the alginate producing strain, up to 60 % of the carbon is

channeled to alginate synthesis indicating that major

redistribution of intracellular metabolite fluxes must occur

when P. fluorescens is switching from non-alginate to

alginate production. Glycerol has become a very cheap

industrial carbon source since it is a bi-product in biodiesel

production, and was thus included as carbon source in

addition to the more commonly used carbon source fruc-

tose. We chose to use both GC–MS and LC–MS/MS to

cover important metabolite groups such as amino acids,

organic acids, sugar phosphates and other phosphometab-

olites as well as nucleotides.

2 Materials and methods

2.1 Strains and cultivation conditions

For detailed description of strain constructions and culti-

vation conditions, refer to Borgos et al. (2012). In short,

continuous cultivations were run in 3 L-Applicon biore-

actors with an operating volume of 750 mL and a dilution

rate of 0.04 h-1 using a defined minimal medium with

either fructose or glycerol as carbon source. Sampling for

metabolite analysis was performed at nitrogen limited

steady-state conditions obtained after five volume changes

at an average OD660 of 8.0 and dry weight 2.9 g/L. Five

bacterial strains were used in this study; the P. fluorescens

SBW25 wild-type and four mutants derived thereof:

mucA-, mucA- DalgC, DalgC, and mucA- TTalgD (TT:

transcription terminator). Only the mucA- strain produces

alginate and the three non-producing mutants serve as

control strains for comparing the alginate non-producing

wild type strain with the alginate producing mucA- strain.

2.2 Metabolite sampling and processing

The experimental design included two (mucA- DalgC

and DalgC on fructose and all strains on glycerol) or

three biological replicates (WT and mucA- on fructose)

with four resamplings (sample preparation and analytical

replicates) from each. Metabolite extracts were prepared

using an adaptation of the cold methanol quenching and

metabolite extraction technique described by other

groups (de Koning and van Dam 1992; Villas-Bôas et al.

2005; Mashego et al. 2007; Winder et al. 2008). Two

types of extracts were prepared: one for the LC–MS/MS

analysis of metabolite classes with rapid turnover rates

(i.e., sugar phosphates and nucleotides) and one for the

GC–MS analysis focusing on amino acids and non-amino

organic acids. The LC–MS/MS samples were prepared

by quenching 2.0 mL of steady-state grown culture in

6.0 mL cold (-20 �C) 50 % methanol containing 100 lL

of a internal standard mixture composed of 0.1 mM

uniformly 13C 15N labelled AMP (13C10, 15N5-AMP,

Sigma-Aldrich) and 0.25 mM 13C1-a-ketoisocaproic acid

(Sigma-Aldrich) within a time frame of 5 s. After sam-

pling the samples were stored at -80 �C awaiting sam-

ple work-up. Further processing involved extractions of

metabolites through three freeze (liquid nitrogen)–thaw

(-20 �C) cycles before a volume of 96 % ethanol

(-20 �C) equal to the sample volume was added to the

sample to precipitate alginate. The samples were then

centrifuged at 15,000 rpm for 10 min (-15 �C) before a

1:2 dilution of the supernatant in de-ionized water (0 �C)

was performed. Precipitation of lipids were performed by

adding one part of cold chloroform (0 �C) to three parts

of the cell-free supernatant before ethanol–methanol–

water phase containing metabolites corresponding to

1 ml culture was frozen at -80 �C prior to freeze-drying

(approximately 36 h).

The samples were reconstituted in 500 lL 60 % methanol

prior to LC–MS/MS analysis. Cell-free supernatants were

prepared as negative controls for differential analysis. GC–

MS samples were prepared by rapid filtration of 2.0 mL

steady-state grown culture through a stack of three filters

(pore size diameters 1.2 lm (VWR cat# SART 11403-47-

N), 0.8 lm (Millipore cat#AAWP04700), and 0.6 lm

(VWR cat# SART 13005-47-N)). The filters were washed

with 5.0 mL 3 % NaCl at ambient temperature before they

were transferred to 8.0 mL -20 �C 37.5 % methanol con-

taining 50 lL of a 0.8 mM d4-succinate, 0.4 mM d8-valine

and 0.8 mM d3-alanine (Sigma-Aldrich) mixture as internal

standards. The sampling was performed within a timeframe

of 30 s. The samples were then subjected to the same pro-

cedure as the LC–MS/MS samples to produce metabolite

extract samples corresponding to 1.0 mL of culture. The

samples were reconstituted in 380 lL 1 M NaOH spiked
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with 20 lL 1 mM d5-glutamate upon derivatization for GC–

MS analysis.

2.3 LC–MS and GC–MS analysis

LC–MS/MS analysis was based on the method introduced

by Luo et al. (2007) and performed on an Agilent 1200

series LC connected via an electrospray ion source to an

Agilent 6410 triple quadrupole MS instrument. Forty-two

common phosphorous containing metabolites were inclu-

ded in this MS/MS method and collision energies were

optimized for each individual metabolite. For the LC–MS/

MS analysis, within sequence variability was evaluated by

quantification of internal standards added to the samples at

the time of sampling. The average relative standard devi-

ation of the mean (STDOM) of the two internal standards

over all LC–MS sequences was 4 %. This indicates that

negligible variation is introduced during sample prepara-

tion and by LC–MS/MS instrumental drift, making the

direct conversion of response to concentration using

external standards included in the LC–MS sequence justi-

fiable. For the metabolite extracts from the five conditions

with two biological replicas (mucA- DalgC and DalgC on

fructose and all strains on glycerol) the average relative

uncertainty in the weighted average of the mean for all

detected metabolites was 6 %. For the three biological

replica of WT grown on fructose and the three biological

replica of mucA- grown on fructose the average relative

uncertainty in the weighted average of the mean was 4 %.

Because both two and three biological replica gave an

average relative uncertainty close to the uncertainty

expected for within sequence variability (the average rel-

ative STDOM of the internal standards) it was decided not

to include three biological replicas for all conditions.

GC–MS analysis was performed on an Agilent 7890

GC-5975 MS instrument. The methyl chloroformate

derivatization (MCF) procedure described by Villas-Bôas

and co-workers was employed with double volumes (Smart

et al. 2010; Villas-Boâs et al. 2003). An Agilent DB-

5MS?DG column with length 30 m ? 10 duraguard, inner

diameter 0.250 mm and film thickness 0.25 lm was used.

The oven temperature was kept at 45 �C for 2 min before a

temperature gradient of 10 �C/min was employed until

300 �C was reached. The oven was then kept at 300 �C for

7.5 min. 2 ll sample were injected in pulsed splitless mode

and the GC was operated in constant pressure (about 1 bar)

mode using d5-glutamic acid (Sigma-Aldrich) for retention

time locking at 16.52 min. The MS was set to scan from

50 m/z to 550 m/z. Data analysis was done using Agilent

Deconvolution Reporting Software (DRS) with a custom

made library. The library consists of 25 known metabolites

and 123 unknowns (the unknowns are major unidentified

peaks detected in representative chromatograms during

preliminary experiments and were included in the library

for monitoring potential variation between the different

strains). For the GC–MS analysis, within sequence vari-

ability was evaluated by quantification of the three internal

standards added to the samples at the time of sampling and

one internal standard added to the samples prior to deriv-

atization (d5-glutamic acid). Averaged over all GC–MS

sequences relative STDOM for the three internal standards

added at the time of sampling was 3 % and the average

relative STDOM for the internal standard added prior to

derivatization was 3 %. To normalize responses, four

samples from a reference fermentation were included in

each GC–MS sequence. This allowed normalization of the

dataset to a reference state for which standard curves for

conversion of responses to concentration was available.

The average relative uncertainty in the weighted average of

the mean for all metabolites detected by the GC–MS

method was similar to the average relative uncertainty in

the weighted average of the mean obtained with the LC–

MS/MS method: 4 % for the four conditions with two

biological replicas and 3 % for the two conditions with

three biological replicas.

Concentrations of metabolites in nmol per gram dry

weight cells (nmol/gDW) for the different strains on the

two different carbon sources are provided in Supplemen-

tary Tables S1 and S2. The concentrations provided are

weighted averages of biological replicates, with uncer-

tainties calculated based on the STDOM for each replica

(Taylor 1997).

3 Results

3.1 Experimental design and cultivation data

Two main biological topics are addressed in this study: the

changes in metabolite pool composition associated with

induction of alginate biosynthesis, and the metabolite pool

adjustments made when utilizing different carbon sources.

Cultivations were performed with either fructose or glyc-

erol to study the carbon source dependence. A non-alginate

producing P. fluorescens SBW25 wild type and an alginate

producing mucA- mutant were used to compare the non-

producing and alginate producing phenotype. In addition,

several control strains were included in the study because

lack of the anti-sigma factor MucA is known to lead to

pleiotropic effects (Firoved and Deretic 2003). A mucA-

DalgC double mutant and a DalgC single deletion mutant

were used as non-alginate producing control strains for the

fructose cultivations. The former harbors the mucA inac-

tivation but does not produce alginate because precursor

synthesis is halted by algC deletion. The DalgC mutant

serves as an additional control. A mucA- TTalgD (TT:

406 S. K. Lien et al.
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transcription terminator) double mutant was used as a non-

alginate producing mucA- control for the glycerol cultiva-

tions. This mucA- mutant is not able to produce alginate

since most biosynthetic enzymes required for alginate

production are not expressed due to inactivation of PalgD.

The strains were grown in continuous cultivations

(chemostats) with a dilution rate of 0.04 h-1 and sampling

was performed at steady state nitrogen-limited conditions.

The cell mass concentrations were, as expected for nitrogen

limited cultures, almost the same for all cultivations.

However the carbon source consumption rates varied for

the different strains, and especially the increased carbon

source consumption rates for alginate producing strains are

noteworthy (Table 1). The glycerol consumption rate was

almost as high as the fructose consumption rate (on Cmole

basis) for both WT and mucA- strains. The cell mass yield

on carbon source (YXS) was, in general, rather low for

bacteria indicating that a relatively high proportion of the

carbon substrate goes towards cell maintenance possible

because the cells are not experiencing carbon source lim-

itation. Thus, they are not forced to use carbon at highest

efficiency. If the proportion of the carbon source used for

alginate production is excluded from the yield calculation

(YXS
** for mucA- strains), the cell mass yield is significantly

higher for the mucA- mutants, including the mucA- mutants

not producing alginate (above 20 % for all mucA- single

and double mutants in Table 1). This apparent improved

cell synthesis capability of mucA- mutants should somehow

be reflected in the metabolome of these mutants.

3.2 Initial evaluation of the metabolome data

Initially the metabolome data set was evaluated by prin-

cipal component analysis (PCA). PCA is an unsupervised

multivariate data analysis method used to aid interpretation

through reduction of data dimensionality. The method

identifies linear combinations of the original data variables

thereby explaining data variability by a minimal number of

PCs. Unscrambler X (CAMO ASA) was used for all PCAs

with mean centered data scaled by dividing the variables by

their standard deviation (STD). Figure 1a is the scores plot

from a PCA of the entire metabolome data set with each

point representing a biological replica. Each biological

replica is the average of four technical replicas. The data

swarm in Fig. 1a show four distinct groupings: the alginate

producing strain on fructose (mucA- represented by blue

circles), the non-alginate producing strains on fructose

(WT, mucA- DalgC and DalgC represented by blue dots,

blue squares and blue diamonds respectively), the alginate

producing strain on glycerol (mucA- represented by red

circles) and the non-alginate producing strains on glycerol

(WT and mucA- TTalgD represented by red dots and red

stars respectively). The strongest separation along PC-1 is

the separation of the alginate producing mucA- strain on

glycerol from the three other groups, and the strongest

separation along PC-2 is the separation of mucA- on fruc-

tose from the three other groups. The two groups closest

together are the two groups composed of non-producing

strains. The scores plot for a separate PCA of these two

groups is shown in Fig. 1b. The PC-1 versus PC-2 plane

separate the data swarm into three groups: the first group is

WT and DalgC strains on fructose (blue dots and blue

diamonds), the second group is mucA- DalgC on fructose

(blue squares) and the third group is WT and mucA-

TTalgD on glycerol (red dots and red stars). PC-3 sep-

arates the non-alginate producing mucA- TTalgD grown

on glycerol from the WT grown on glycerol. The distinct

groupings in Fig. 1a, b show that the metabolome data

set contains information about P. fluorescens metabolism

connected to whether it is using fructose or glycerol as

carbon source, whether it is producing alginate or not,

and whether mucA is inactivated or not. Loadings plot

Table 1 Measured and calculated cultivation data of P. fluorescens SBW25 wild type and mutants derived thereof

Carbon

source

Strain Carbon source

uptake (mmolC/

g DW h)

Acetylated alginate

production (mmolC/

g DW h)

CO2 excretion

(mmolC/

g DW h)

Biomass

productiona

(mmolC/g DW h)

Carbon

balance

(%)

YXS

(%)

YXS
b

(%)

Fructose SBW25 9.4 – 7.5 1.5 96 16

mucA- 18.3 13.1 4.6 1.5 104 8 29

DalgC 9.1 – 7.4 1.5 98 16

mucA- DalgC 5.8 – 4.3 1.5 99 26

Glycerol SBW25 8.3 – 6.4 1.5 96 18

mucA- 17.5 11.8 3.6 1.5 97 9 26

mucA- TTalgD 6.9 – 5.0 1.5 95 22

The table includes carbon source consumption rate and production rates of carbon containing compounds (i.e., acetylated alginate, CO2 and

biomass), percentage carbon recovery and yields (biomass/carbon source)
a Constant biomass composition is assumed
b This yield is based on carbon source consumption rate excluding carbon flux to alginate
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corresponding to Fig. 1a, b can be found in Supple-

mentary Fig. S1.

To investigate exactly what separates the alginate pro-

ducing mucA- strain and the non-alginate producing mucA-

DalgC and mucA- TTalgD strains from the WT and DalgC

strains, it is beneficial to do PCAs for the fructose and

glycerol data separately to exclude variation introduced

when utilizing different carbons sources. Figure 2 shows

(a) the scores plot and (b) the loadings plot from a PCA of

all cultivations on fructose (see Table 2 later in the text for

an explanation of the abbreviations of metabolite names

used in the loadings plot). The scores plot show three

distinct groupings of the data swarm: mucA- (blue circles),

WT and DalgC (blue dots and blue diamonds) and mucA-

DalgC (blue squares). The scores plot and the loadings plot

taken together show that mucA- has high levels of GMP,

GDP and GDP-M, that WT and DalgC have high levels of

ATP and Acetyl-CoA and that high levels of F1P, GAP,

Suc and AMP seems to be in common for the mucA- and

the mucA- DalgC strain. It is interesting to note that if two

separate PCAs are done for the fructose data; one for the

data collected by the LC–MS method and one for the data

collected by the GC–MS method, the three groups of

Fig. 2a show better separation on the scores plot of the LC–

MS data than on the scores plot of the GC–MS data

(Supplementary Fig. S2). This indicates that phosphome-

tabolites and nucleotides are more affected by whether or

not alginate is produced and by whether or not MucA is

inactivated than amino and non-amino organic acids for

cultivations on fructose. Figure 3 show (a) the scores plot

and (b) the loadings plot from a PCA of all cultivations on

glycerol. As for the fructose data, the scores plot for the

glycerol data shows three distinct groupings: the alginate

producing strain (mucA- represented by red circles), the

non-alginate producing strain (WT represented by red dots)

and the non-alginate producing mucA- mutant (mucA-

TTalgD represented by red stars). The loadings plot

interpreted together with the scores plot show that the most

distinctive feature for the mucA- strain is elevated levels of

GMP, GDP, GDP-M, R5P, NAD, E4P, F1P, PEP and 3PG,

the most distinctive feature for WT seems to be elevated

levels of CTP, Glu, Orn, ATP and UTP and the most dis-

tinctive feature of mucA- TTalgD seems to be elevated

levels of Suc and Cit. As for the fructose data, separate

PCAs of the glycerol LC–MS data and the glycerol GC–

MS data showed that the LC–MS data better retains the

separation of strains seen in Fig. 3a, again indication that

phosphometabolites and nucleotides are more affected by

alginate synthesis and mucA inactivation than amino acids

and organic acids (Supplementary Fig. S3).

PCA of carbon source dependency is best analysed

separately for alginate non-producing strains and the algi-

nate producing strain because the variation between these

two groups would otherwise dominate the analysis (as seen

in Fig. 1, i.e. PCA of the non-alginate producing strains is

given in Fig. 1b). Figure 4 shows the scores plot (a) and the

BA

Fig. 1 a Scores plot from a PCA of the total metabolome data set

(LC–MS and GC–MS data for both fructose and glycerol cultivations

of all strains) and b scores plot from a PCA of the non-alginate

producing strains for both fructose and glycerol cultivations. Each

data point in the scores plot represents one biological replica.

Corresponding loadings plot can be found in Supplementary Fig. S1.

Blue fructose cultivations; red glycerol cultivations; dots wild type;

circles mucA-; squares mucA- DalgC; diamonds DalgC; stars mucA-

TTalgD
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loadings plot (b) of a PCA of the mucA- strain grown on

fructose and on glycerol. Two distinct groups have been

separated along PC-1: mucA- grown on fructose (blue

circles) and mucA- grown on glycerol (red circles). Inter-

pretation of the scores plot and loadings plot together

shows that growing mucA- on fructose leads to high con-

centrations of FBP, NADP and F1P and that growing

mucA- on glycerol leads to high concentrations of Gol3P,

DHAP, 3PG, R5P, PEP and 6PGn. PCAs were also per-

formed separately for LC–MS and GC–MS data, and this

showed that separation of strains and separation of a strain

on different carbon sources are stronger for phosphome-

tabolites and nucleotides than for amino acids and organic

acids (Supplementary Figs. S4, S5).

The GC–MS library used for analysis included 123

unknowns in addition to 25 amino acids and organic acids.

A separate PCA was performed for the unknowns to look

for specific compounds that stood out in separating the

various strains on the different carbons sources. The PCA

showed some separation of strains but the loadings plot

indicated that many unknown compounds contributed to

this separation, and thus no limited number of unknown

compounds were chosen for further investigation (see

Supplementary Fig. S6 for PCAs of unknown compounds).

3.3 Comparison of metabolite pools of alginate

producing and non-producing strains cultivated

on fructose

Although a powerful multivariate data analysis technique,

PCA does not yield quantitative information about the

metabolic consequences of MucA inactivation, quantitative

information about the metabolic changes associated with

alginate production or quantitative information about

metabolic adjustments connected to different carbons

sources. Figures 5 and 6 give a semi-quantitative

visualization of the metabolome data as color coded boxes

presented in a metabolic network using the visualization

software Omix (Droste et al. 2011). Figure 5 display results

for fructose cultivations and Fig. 6 display results for

glycerol cultivations. The metabolic pathways displayed

are the glycolytic/Emden-Meyerhof Parnas pathway

(EMP), the pentose phosphate pathway (PPP), the tricar-

boxylic acid pathway (TCA), the alginate biosynthetic

pathway and the Entner-Doudoroff pathway (EDP) used by

Pseudomonas (Conway 1992). Detected amino acids are

also included in the network connected to their precursor

metabolites. Metabolite concentrations are presented as

ratios of mutants to WT using the weighted average of

biological replica for each strain. The ratios are visualized

by color interpolation from green (ratio of 0.13) to red

(ratio of 8.00) on a logarithmic scale. For yellow boxes

(ratio of 1.00) the metabolite concentration is equal for

mutant and WT. As relative uncertainties for the ratios in

most instances are below 10 % (see Supplementary Tables

S4 and S5 for numerical value of ratios and corresponding

uncertainties), detectable color differences in Figs. 5 and 6

generally represent significant differences between strains

(the colors next to each other on the bottom right color

scale of the figures differ by 41 %).

Looking at the fructose cultivations (Fig. 5) the mutant

with the most WT-like metabolome is the DalgC stain. This

is expected as only one enzymatic activity, the phospho-

mannomutase, is inactivated in this mutant. The most

notable observation for the DalgC mutant is the fourfold

decrease in concentration of GDP-M, presumably due to the

mutant’s reduced ability to produce the alginate precursor

M1P. The concentration of GDP-M is even more decreased

for the mucA- DalgC mutant: it is actually below the

detection limit (grey box), whilst for mucA- GDP-M con-

centration is elevated compared to the WT strain. Compar-

ing the two mucA- mutants to the WT, the most notable

A B

Fig. 2 a Scores plot and b loading plot of a PCA of the LC–MS and

GC–MS data for cultivations on fructose. Each data point in the

scores plot represents one biological replica. Dots wild type; circles

mucA-; squares mucA- DalgC; diamonds DalgC. See Table 2 for an

explanation of the abbreviations used and Supplementary Table S3

for numerical values for variables in the loadings plot
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Table 2 Absolute concentrations [nmol/gDW] of phosphometabolites, amino acids and organic acids given as weighted average (WAV) of

biological replicates for P. fluorescens SBW25 wild type and mucA- mutant grown on fructose and glycerol provided with relative uncertainties

(RU)

Metabolite CID Fructose Glycerol

WT mucA WT mucA

WAV (nmol/

g DW)

RU

(%)

WAV (nmol/

g DW)

RU

(%)

WAV (nmol/

g DW)

RU

(%)

WAV (nmol/

g DW)

RU

(%)

NAD 5,892 1,812 3 2,543 3 1,551 2 2,957 1

NADP 5,886 479 3 618 2 472 2 422 1

ATP 5,957 2,149 2 1,070 5 1,276 7 892 2

ADP 6,022 1,732 2 3,387 3 1,563 3 2,279 1

AMP 6,083 1,339 2 12,066 3 860 1 12,554 1

GTP 6,830 557 2 720 6 211 7 297 2

GDP 8,977 744 2 3,189 5 383 4 4,061 2

GMP 6,804 555 3 4,730 4 208 2 7,612 1

CTP 6,176 423 3 729 3 329 6 158 1

UTP 6,133 560 2 631 3 388 6 316 2

Fructose 1-phosphate (F1P) 65,246 3,165 3 29,008 3 ND 102 2

Glycerol 3-phosphate (Gol3P) 754 2,900 3 3,560 4 15,858 2 15,474 1

GDP-Mannose (GDP-M) 18,396 348 2 1,284 3 69 2 2,027 2

Glucose-6-phosphate (G6P) 5,958

Mannose-6-phosphate (M6P) 69,507

Fructose-6-phosphate (F6P) 65,127

Glucose-1-phosphate (G1P) 65,533 26,182 3 31,727 3 27,552 2 47,801 1

Fructose 1,6-bisphoshate (FBP) 10,267 776 1 1,929 6 152 14 385 4

Dihydroxyacetonephosphate (DHAP) 668 3,514 3 3,615 4 8,659 4 280,741

Glyceraldehyde 3-phosphate (GAP) 729 ND 255 18 586 2 820 1

3-Phosphoglycerate (3PG) 724 8,229 2 15,239 3 16,941 6 111,603 1

Phosphoenolpyruvate (PEP) 1,005 2,278 3 1,955 4 3,251 3 23,523 1

6-Phosphogluconate (6Pgn) 91,493 2,924 1 966 3 348 12 7,776 3

Ribulose 5-phosphate 439,184

Xyluse 5- Phosphate (Ru5P, X5P) 441,187 2,377 3 1,535 3 982 1 2,559 1

Ribose 5-phosphate (R5P) 439,167 840 1 821 3 166 3 1,759 1

Erythrose 4-phosphate (E4P) 122,357 ND 784 0 ND 72 2

Acetyl-CoA 444,493 531 4 297 18 28 9 327 1

CoA 6,816 100 6 89 11 33 9 74 12

Citrate (Cit) 311 5,693 1 5,240 1 5,449 2 5,019 2

2-Oxoglutarate (OGA) 51 2,503 3 2,487 1 2,873 4 2,761 3

Succinate (Suc) 1,110 21,373 8 24,365 8 19,205 15 19,300 17

Fumarate (Fum) 444,972 4,562 0 4,594 0 4,465 0 4,465 0

Malate (Mal) 525 399 4 580 8 276 4 281 4

Glycine (Gly) 750 2,231 1 2,167 1 2,288 1 2,077 3

Cysteine (Cys) 594 1,002 1 1,005 1 1,064 2 1,006 1

Phenylalanine (Phe) 994 2,914 0 2,738 0 2,877 0 2,858 0

Tyrosine (Tyr) 1,153 118 8 60 12 139 11 85 21

Lactate (Lac) 612 10,982 7 8,866 6 4,954 19 6,098 18

Leucine (Leu) 857 494 5 424 5 367 4 323 4

Valine (Val) 1,182 3,612 1 3,487 0 3,803 1 3,695 1

Alanine (Ala) 602 4,088 1 4,126 1 4,256 1 4,092 2

Aspartate (Asp) 424 3,299 1 3,207 1 3,105 1 3,168 1

Lysine (Lys) 866 3,503 1 3,175 1 3,452 2 3,043 1

410 S. K. Lien et al.

123



A B

Fig. 3 a Scores plot and b loading plot of a PCA of the LC–MS and

GC–MS data for cultivations on glycerol. Each data point in the

scores plot represents one biological replica. In the loadings plot the

metabolites GMP, GDP, GDP-M, R5P, NAD, E4P, F1P, PEP and

3PG are enclosed by a rectangle. Dots wild type; circles mucA-; stars
mucA- TTalgD. See Table 2 for an explanation of the abbreviations

used and Supplementary Table S3 for numerical values for variables

in the loadings plot

A B

Fig. 4 a Scores plot and b loading plot of a PCA of LC–MS and GC–

MS data for mucA- grown on both fructose (blue) and glycerol (red).

Each data point in the scores plot represents one biological replica. In

the loadings plot the metabolites Gol3P, 3PG, R5P, PEP and 6PGn are

enclosed by a rectangle. See Table 2 for an explanation of the

abbreviations used and Supplementary Table S3 for numerical values

for variables in the loadings plot

Table 2 continued

Metabolite CID Fructose Glycerol

WT mucA WT mucA

WAV (nmol/

g DW)

RU

(%)

WAV (nmol/

g DW)

RU

(%)

WAV (nmol/

g DW)

RU

(%)

WAV (nmol/

g DW)

RU

(%)

Isoleucine (Ile) 791 848 4 833 3 827 3 782 2

Glutamate (Glu) 611 59,437 5 29,711 7 45,772 7 32,621 7

Ornithine (Orn) 389 4,136 2 4,034 1 4,081 0 4,144 1

Glutamine (Gln) 738 5,064 6 5,586 7 2,949 6 4,353 16

Proline (Pro) 614 2,956 1 2,845 1 2,935 1 2,805 1

CID PubChem Compound IDentifier
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Fig. 5 Metabolome data from fructose cultivations visualized as

color coded boxes of ratios of DalgC, mucA- DalgC and mucA-

mutants relative to P. fluorescens SBW25 WT. The ratios have been

color coded on a logarithmic scale as indicated on the bottom right

bar. Grey boxes indicate a concentration below the detection limit.

See Table 2 for an explanation of the abbreviations used
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Fig. 6 Metabolome data from glycerol cultivations visualized as

color coded boxes of ratios of mucA- TTalgD and mucA- mutants

relative to P. fluorescens SBW25 WT. The ratios have been color

coded on a logarithmic scale as indicated on the bottom right bar.

Grey boxes indicate a concentration below the detection limit.

Table 2 for an explanation of the abbreviations used
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differences are observed in the nucleotide pool. The mucA-

and mucA- DalgC mutants show the same pattern in the AXP

pools (X: T, D, M) with lower concentration of ATP and

higher concentrations of ADP and AMP relative to the WT.

For the GXP nucleotide series the alginate producing mucA-

mutant has a slightly higher pool of GTP and significantly

higher pools of GDP and GMP, while the non-alginate

producing mucA- DalgC mutant has decreased pools of

GTP (below detection level), GDP and GMP relatively to

the WT. Clearly there are separate effects on the nucleotide

pools by GTP-consuming alginate synthesis and by inacti-

vation of the MucA anti-sigma factor. The most noteworthy

observations among the phosphorylated metabolites in the

glycolytic pathway and the PPP are the decreased 6-phos-

phogluconate (6PGn) pool and the increased fructose-1-

phosphate (F1P) pool and glyceraldehyde 3-phosphate pool

(GAP, values not displayed in Fig. 5 because concentration

for WT is below detection limit) for the mucA- mutants. For

amino acids and organic acids the differences between

strains are much smaller. The most significant differences

are the two-fold decrease in glutamate and tyrosine con-

centration for the alginate producing mucA- mutant and the

doubled concentration of succinate (Suc) for the mucA-

DalgC mutant.

Many of the observations from Fig. 5 coincide with the

result from the PCA of the fructose data (Fig. 2): DalgC is

the mutant strain most similar to the WT strain, concen-

trations of GDP, GMP and GDP-M are especially high for

mucA-, high concentration of F1P, GAP and AMP are

characteristic of both mucA- and mucA- DalgC and

phosphometabolites and nucleotides are more affected by

MucA inactivation and alginate production than amino

acids and organic acids.

3.4 Comparison of metabolite pools of alginate

producing and non-producing strains cultivated

on glycerol

Comparing cultivations on glycerol (Fig. 6) with cultiva-

tions on fructose (Fig. 5), the most apparent similarities are

the higher concentration of mono- and di-phosphate

nucleotides in the alginate producing strain relative to the

WT strain, and the less variable amino and organic acid

concentrations across the various strains. It is also in

common for both carbons sources that the most noticeable

change in amino and organic acids is the decrease in glu-

tamate and tyrosine pools when alginate is synthesized. In

other respects the glycerol cultivations differ from the

fructose cultivations: GDP and GMP pools were lower for

the non-alginate producing mucA- mutant relative to the

WT when grown on fructose, whilst the non-alginate pro-

ducing mucA- mutant grown on glycerol, mucA- TTalgD

has a higher concentration than the WT. Another difference

when utilizing glycerol is that mucA- DalgC cultivated on

fructose had undetectable amounts of GDP-M, whilst in

contrast mucA- TTalgD grown on glycerol has an elevated

GDP-M concentration. The elevated concentration of

GDP-M for mucA- TTalgD is surprising as inactivation of

PalgD should prevent synthesis of AlgA needed for syn-

thesis of M6P and GDP-M. Another difference is that it is

specific for glycerol cultivations that glycolytic pathway

and PPP metabolites pools generally are higher in the

mucA- strain and lower in the mucA- TTalgD strain relative

to the WT. It is also specific for glycerol cultivations that

glycerol as the sole carbon source supports elevated

6-phosphogluconate and acetyl-CoA pools for the mucA-

mutants.

Several of the observations from Fig. 6 coincide with

the result from the PCA of the glycerol data (Fig. 3): the

PCA also indicated that the different strains have more

similar amino acid and organic acid concentrations than

phosphometabolite and nucleotide concentrations, and the

PCA indicated that the mucA- strain had high concentration

of GDP-M and several intermediates in the glycolytic

pathway and in PPP.

3.5 Comparison of metabolite pools in fructose

and glycerol grown mucA- mutants and WT

Metabolite concentrations for WT and the mucA- strain are

given in Table 2 for further investigation of how P. fluo-

rescens adopts to different carbon sources (the data is

presented in a metabolic network as ratios of glycerol

cultivations to fructose cultivations in Supplementary Fig.

S7). A comparison of the metabolome of fructose and

glycerol grown P. fluorescens cells reveal both strain and

carbon source dependencies. The PPP metabolite pools

were lower on glycerol compared to fructose when there is

no alginate production (WT), and higher when alginate is

produced (mucA-). This is also true for GDP-M. Further-

more, the hexose-phosphate pool is similar in WT on

glycerol and fructose, while is seems that turning on the

alginate production in the mucA- mutant results in a

slightly elevated level of hexose-phosphates on glycerol

compared to fructose. So for these metabolites the strains

behave differently on different carbons sources. In contrast

glycerol-3-phosphate (Gol3P) and the four three-carbon

compounds of the glycolytic pathway [dihydrox-

yacetonephosphate (DHAP), GAP, 3-phosphoglycerate

(3PG) and phosphoenolpyruvate (PEP)] are all present at

elevated concentrations when glycerol is used as carbon

source. Also fructose-1,6-bisphosphate (FBP) and F1P

behave in a carbon source dependent manner rather than

strain dependent: the pool is significantly lower for both

WT and mucA- when the cells are grown on glycerol

compared to fructose. For most amino acids it seems that
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changing the carbons source has little effect: the concen-

trations are similar for both WT and mucA- on the two

carbons sources. Also independent of carbons source is the

high concentrations of 3PG, the hexose-phosphates, lactate

(Lac), succinate and glutamate compared to other metab-

olites for both strains. Several of these results were also

found when comparing glycerol cultivations with fructose

cultivations by PCA (see Fig. 4 for mucA-).

4 Discussion

The presented results show that inactivation of mucA has

significant effects on the composition of the P. fluorescens

metabolome, both in the presence and absence of alginate

synthesis. Cultivation data from the chemostats revealed

that the growth yield on carbon source increased from

16 % for WT on fructose to 26 % in mucA- DalgC on

fructose concurrent with an almost 40 % decrease in the

fructose consumption rate (Table 1). Since the final cell

titer was approximately the same in these nitrogen limited

cultivations, this implies that the mucA inactivation results

in a cell that is much more efficient in synthesizing cell

material as it uses less of the excessive carbon source and

converts a higher fraction of it into cell mass. Transcrip-

tome analysis from the same set of cultivations identified a

significantly up-regulation of ribosomal genes and genes

involved in energy generation, including a ATP synthase

subunit and dehydrogenase genes in mucA- mutants, while

expression of metabolic genes were not significantly

altered (Borgos et al. 2012). The metabolic profiling study

reported here provides further insights into the pleiotropic

effects of mucA inactivation.

4.1 The mucA mutation leads to a significantly reduced

energy charge

The energy charge (EC = (ATP ? 0.5 * ADP)/(ATP ?

ADP ? AMP)) was found to be 0.58 and 0.56 for WT

grown on fructose and glycerol, respectively. The EC

dramatically decreased in the mucA- mutants (0.17 and

0.13 for the mucA- mutant grown on fructose and glycerol,

respectively, and 0.13 for the mucA- DalgC mutant on

fructose and 0.20 for mucA- TTalgD mutant on glycerol,

respectively) while the DalgC mutant had EC 0.46 on

fructose (see Supplementary Table S1 for concentration

values used for EC calculations). EC of actively growing

bacterial cells is expected to be higher than 0.8 and cells

become metabolically inert when the EC drops below 0.5

(Chapman et al. 1971). Therefore, the recorded ECs in this

study are unexpectedly low, especially for the mucA-

mutants. van der Werf et al. (2008) also reported low EC

values on some carbon sources for Pseudomonas putida

S12 (i.e., 0.07 and 0.50 on glucose and gluconate

respectively) and high values on some other carbon

sources (i.e., 0.87 and 0.84 on fructose and succinate

respectively) in batch fermentations. Furthermore, Barrette

et al. (1988) reported EC values below 0.3 for E. coli and

P. aeruginosa but the cells recovered easily when unlea-

shed from the growth limitation. Clearly, the issue of

absolute EC threshold and viability must be revisited.

However, it is important to remember that the EC might

differ between bacterial strains and also with cultivation

conditions (un-limited growth in batch-cultures versus

nutrient-limited growth in chemostats). In addition, sam-

pling and analytical protocols are factors that also can

influence the final recorded measurement. The cold

methanol extraction protocol was used in this study.

Bolton and co workers presented an overview of several

microbial studies using this protocol, and showed that EC

values varied from 0.16 to 0.92 in these studies (Bolten

et al. 2007). Clearly, the development of a rapid inacti-

vation protocol for bacteria without metabolite leakage

with subsequent extraction of all metabolite groups has not

yet been successful, even though many research groups

have focused on this important aspect of metabolomics

(Bolten et al. 2007; Taymaz-Nikerel et al. 2009; van Gulik

2010; Villas-Boâs and Bruheim 2007; Winder et al. 2008).

Irrespective of this, on a relative basis, the metabolic

profiling data presented in this study provide some

important insight into the altered metabolism of mucA-

mutants. The absolute concentrations presented in Table 2

show that it is predominantly the high concentration of

AMP in the mucA- mutants that cause the EC reduction in

these strains. A significantly increased AMP pool was also

observed in the P. putida S12 glucose cultivation com-

pared to the fructose cultivation (van der Werf et al.

2008), which indicate that Pseudomonas cell nucleotide

pools are adjusted also by cultivations conditions in

addition to changed genotype (i.e., mucA inactivation).

The observation of lower ECs and higher growth yield on

carbon source in mucA- mutants is quite surprising as a

low EC should favor catabolism rather than anabolism.

But, the results indicate that as long as the ATP pool is

maintained above a critical level, the apparent low ECs

does not impair growth capabilities. Also, glycerol is more

reduced (i.e., more energy rich) but fructose supports

higher ATP pools both in WT and mucA- implying that

there is no direct correlation between ATP pool size and

degree of reduction of the carbon substrate. On a relative

basis, however, the cells are able to maintain similar EC

values on the two different carbon sources showing that

not only relative (i.e., EC) but also absolute concentrations

of nucleotides are of importance for maintaining viability

and growth performance.
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4.2 Metabolite pools sizes are adjusted through

increased carbon source consumption rates

in alginate producing mucA- strain

The carbon source uptake is adjusted to cover the con-

sumption related to alginate synthesis (Table 1). A reflec-

tion of this is seen in the overall picture of changes in the

metabolite pools comparing alginate producing to non-

producing cells; as the cells are growing with same growth

rate and obtaining same dry weight concentration, the

amino acid pool is less affected than the phosphometabolite

and nucleotide pools. Frimmersdorf et al. (2010) working

with shake flask batch cultures also observed minor chan-

ges in core metabolism metabolites between wild type and

mucoid P. aeruginosa strains cultivated on different carbon

sources. However, when interpreting metabolite pool data

it is important to realize that there is no direct link between

metabolite pool sizes and metabolic fluxes, although

changes in metabolite pool sizes indicate that, and likely

where, perturbations of the metabolic network have

occurred. Substrate consumption rates and growth/pro-

duction rates can to some extent guide the interpretation of

the data when true intracellular metabolic flux distribution

data is lacking, i.e., for glycerol cultivations there must be

an increased metabolic flux from glycerol via GAP/DHAP

to the alginate precursor metabolite F6P for the alginate

producing mucA- mutant compared to WT. Interestingly,

the higher PPP metabolite pools in mucA- mutant on

glycerol must be a consequence of this increased flux from

glycerol to F6P. However, it can not be concluded that

there is an increased flux through the PPP for mucA-

mutant on glycerol, and there is no obvious reason for the

cell to increase the PPP flux since neither NADPH nor

pentose phosphates are needed for alginate synthesis. But

there seems to be a direct correlation between increased

metabolic fluxes and increased pool sizes close to the

carbon source entry site in the primary metabolic pathway

since both F1P and FBP pools are increased in mucA-

mutant on fructose, and 3PG, PEP and DHAP pools are

increased in mucA- mutant on glycerol. Interestingly, the

FBP pool is larger in the fructose—WT than the glycerol—

mucA- cultivation (Table 2), even though the carbon flux

from glycerol to alginate via FBP in mucA- mutant is of the

same magnitude as the total fructose uptake rate in WT.

Clearly, there is no direct and unambiguous link between

metabolite concentration and metabolic flux.

4.3 Composition of GXP nucleotides is significantly

changed in alginate producing cells

While the changes in AXP pools were attributed to the

inactivation of mucA, the changes in GXP pools are attrib-

uted to activation of alginate synthesis. If fructose is used as

carbon source two ATP is used to activate fructose to F6P via

FBP and one GTP is used for synthesis of GDP-M. The two

NADH produced in the oxidation of the latter metabolite to

GDP-Mu by AlgD should therefore via oxidative phos-

phorylation and nucleoside di-phosphate kinases provide

enough high-energy phosphates to support alginate synthesis

without extra oxidation of fructose to CO2 for additional

energy formation. But, imposing alginate production

increases the turnover rates in the GXP pools and the dra-

matic increased concentration of GDP and GMP indicate a

strong cellular response to the increased GTP consumption.

In conclusion, the metabolite pool measurements consti-

tute a complex picture of the relation between alginate syn-

thesis and carbon and energy metabolism in P. fluorescens.

The most significant findings in this study are the changes in

GXP pools related to alginate synthesis and the changes in

AXP pools related to mucA inactivation. Many minor,

though interesting, findings on how P. fluorescens metabo-

lite pools are adjusted to various conditions were also

observed. More information about kinetics, regulation and

metabolic flux distribution are needed to interpret the data

further, especially to find out how inactivation of the anti-

sigma factor mucA contribute to the increased growth yield.
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Bruheim, P. (2011). Highly sensitive GC/MS/MS method for

quantitation of amino and nonamino organic acids. Analytical
Chemistry, 83, 2705–2711. doi:10.1021/ac103245b.

Lien, S. K., Kvitvang, H. F., & Bruheim, P. (2012). Utilization of a

deuterated derivatization agent to synthesize internal standards

for gas chromatography–tandem mass spectrometry quantifica-

tion of silylated metabolites. Journal of Chromatography A,. doi:

10.1016/j.chroma.2012.05.053.

Lu, W., Bennett, B. D., & Rabinowitz, J. D. (2008). Analytical strategies

for LC-MS-based targeted metabolomics. Journal of Chromatog-
raphy B-Analytical Technologies in the Biomedical and Life
Sciences, 871, 236–242. doi:10.1016/j.jchromb.2008.04.031.

Luo, B., Groenke, K., Takors, R., Wandrey, C., & Oldiges, M. (2007).

Simultaneous determination of multiple intracellular metabolites in

glycolysis, pentose phosphate pathway and tricarboxylic acid cycle

by liquid chromatography-mass spectrometry. Journal of Chroma-
tography A, 1147, 153–164. doi:10.1016/j.chroma.2007.02.034.

Martin, D. W., Schurr, M. J., Mudd, M. H., Govan, J. R. W., Holloway,

B. W., & Deretic, V. (1993). Mechanism of conversion to mucoidy

in Pseudomonas aeruginosa infecting cystic-fibrosis patients.

Proceedings of the National academy of Sciences of the United
States of America, 90, 8377–8381. doi:10.1073/pnas.90.18.8377.

Mashego, M. R., Rumbold, K., de Mey, M., Vandamme, E., Soetaert,

W., & Heijnen, J. J. (2007). Microbial metabolomics: past, present

and future methodologies. Biotechnology Letters, 29(1), 1–16.

Meyer, H., Liebeke, M., & Lalk, M. (2010). A protocol for the

investigation of the intracellular Staphylococcus aureus metab-

olome. Analytical Biochemistry, 401, 250–259. doi:10.1016/j.ab.

2010.03.003.

Nielsen, J., & Oliver, S. (2005). The next wave in metabolome

analysis. Trends in Biotechnology, 23, 544–546. doi:10.1016/j.

tibtech.2005.08.005.

Rehm, B. H. A. (2010). Bacterial polymers: biosynthesis, modifications

and applications. Nature Reviews Microbiology, 8, 578–592. doi:

10.1038/nrmicro2354.

Schnider-Keel, U., Lejbolle, K. B., Baehler, E., Haas, D., & Keel, C.

(2001). The sigma factor AlgU (AlgT) controls exopolysaccha-

ride production and tolerance towards desiccation and osmotic

stress in the biocontrol agent Pseudomonas fluorescens CHA0.

Applied and Environmental Microbiology, 67, 5683–5693. doi:

10.1128/aem.67.12.5683-5693.2001.

Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Boâs, S. G.
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