












FIG 6 Relative GC-MS peak intensities of significant metabolites between 100-ml serum bottle (stars) and bioreactor (circles) cell extracts during the incubation period.
The color bars on the right represent the duration of the incubation during which samples were collected.
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It is known that conversion of malate to oxaloacetate via MDH
activity is thermodynamically unfavorable in cells (74). This may
constrain oxaloacetate homeostasis in cells grown with fumarate
as the electron acceptor, while resulting in accumulation of
malate, which could eventually be secreted into the medium (71).

The GC-MS data confirm these findings, as malate levels were
not overly affected by the scaling-up process, since its intensities
were similar in both bioreactor- and 100-ml serum bottle-grown
cells throughout the experiments (Fig. 6b).

Nicotinamide was also identified by the CCA (Fig. 5; see Table
S2 in the supplemental material). NAD is a cofactor involved in
more than 300 oxidation-reduction reactions, of which the con-
version of malate to oxaloacetate through the activity of MDH is
one (75). The nicotinamide levels may reflect the levels of NAD
availability within cells at different stages of growth. Interestingly,
the levels of nicotinamide under both cultivation conditions dis-
played trends very similar to those of oxaloacetate and pyruvate,
starting at low concentrations during the lag phase, increasing
throughout the log phase, and finishing with a period of stability
during the stationary phase (Fig. 6h).

The lower availability of NAD during the lag phase of cells
grown in the bioreactor may affect the respiration rate by limiting
the activity of MDH, an NAD-dependent enzyme, resulting in

lower oxaloacetate formation. This may trigger a feedback loop
which could be explained as follows: first, it limits the amount of
oxaloacetate which could be fed into gluconeogenesis, pyruvate
synthesis, and acetyl-CoA production (Fig. 7, orange arrows); sec-
ond, it reduces the respiration rate, which is followed by subse-
quent limitation of the 2-oxoglutarate availability and its conver-
sion to succinyl-CoA, which provides the reduced ferredoxin (Fig.
7, dashed blue arrow) required for catalyzing the conversion of
acetyl-CoA to pyruvate (Fig. 7, purple arrow).

Furthermore, intracellular citrate levels in the 100-ml serum
bottles started to increase after the first 6 h of incubation up to the
96-h time point, followed by a decreasing trend (Fig. 6d, stars). By
contrast, citrate levels in the bioreactor samples were low and
stable up to the first 24 h of incubation, after which they followed
the same trend as in the serum bottle samples (Fig. 6d, circles).
These findings further support our hypothesis that limited MDH
activity restricts the pool of oxaloacetate, resulting in lower activ-
ity of the TCA cycle during the lag phase for G. sulfurreducens
grown under both cultivation conditions.

To test the above hypothesis, NBAF was supplemented with
nicotinamide (final concentration of 1 mM) to investigate the
effects of nicotinamide on the growth of G. sulfurreducens cells in
the 5-liter bioreactor. The growth curves displayed in Fig. 1 sug-

FIG 7 Pathway of acetate metabolism in G. sulfurreducens during growth on NBAF medium with fumarate as the electron acceptor and acetate as the electron
donor. Acetate is transported into the cells (green arrow) via acetate permease (magenta protein channel). Imported acetate can be activated via one of the
following two pathways: (i) the acetate kinase (EC 2.7.2.1) followed by the activity of phosphotransacetylase enzyme (EC 2.3.1.8) (purple arrows) producing
acetyl-CoA which is directed toward pyruvate synthesis and subsequently into biomass and amino acid synthesis pathways, or (ii) acetate being oxidized through
conversion of succinyl-CoA to succinate via the activity of succinyl-CoA:acetate CoA-transferase enzyme (EC 2.8.3.18), resulting in the production of acetyl-CoA
(yellow arrows) which is directed toward the TCA cycle. The fumarate provided in the medium is taken up (green arrow) via the fumarate transporter proteins
(C4-dicarboxylic acid transporter). Imported fumarate can either be (i) directed toward the TCA cycle (blue arrow), which operates as an open loop and ends with
the formation of succinate and its excretion into the medium (red arrow), or (ii) reduced to succinate via the activity of inner membrane-bound FrdCAB enzyme
(fumarate reductase activity) followed by its excretion into the medium (red arrow) (66, 67, 76, 77).
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gest that the nicotinamide-supplemented NBAF significantly im-
proved the growth of the cells in the 5-liter bioreactor, while re-
ducing the lag phase period from 24 h to 6 h, similar to that of the
cells grown in the 100-ml serum bottles. Furthermore, levels of
nicotinamide in the medium detected by GC-MS analysis (Fig. 1)
show the consumption of nicotinamide. The NBAF medium prior
to nicotinamide supplementation was also tested by GC-MS anal-
ysis; however, as expected, no peaks corresponding to nicotin-
amide were detected (data not shown). The nicotinamide supple-
mentation effect on growth is illustrated in Fig. 1. As nicotinamide
starts a depletion trend (60 h), the growth rate is declining and
cells enter stationary phase. This is followed be the complete de-
pletion of nicotinamide in the medium (96 h), which is concom-
itant with a steady period of growth.

We also examined the growth behavior of G. sulfurreducens on
NBAF supplemented with nicotinamide (1 mM) and oxaloacetate
(6 mM) in the 100-ml serum bottles; while oxaloacetate supple-
mentation resulted in an extended lag phase, nicotinamide had no
significant effects on the lag phase (see Fig. S4 in the supplemental
material).

On the whole, during the first 24 h of incubation, the majority of
the metabolites detected displayed lower intensities in the bioreactor-
grown cells than in those grown in the 100-ml serum bottles, espe-
cially metabolites of TCA cycle, with the exception of malate and
fumarate (Fig. 6). Comparisons of the significant FTIR vibrations
(Fig. 8; see Fig. S3 in the supplemental material), identified via PC-
DFA loadings (see Fig. S2), were in agreement with the GC-MS find-
ings (Fig. 6). The intensity of the amide I band (Fig. 8a) for the serum
bottle samples showed an increasing trend up to the first 24 h fol-
lowed by a steady state, while the bioreactor samples displayed no
significant change up to the 24-h time point followed by a slow in-
crease thereafter. Furthermore, comparison of the intensity of car-
boxylic acid-specific FTIR vibrations (Fig. 8b; see Fig. S3) for the
bioreactor samples also displayed a similar trend, with a steady state
in the first 24 h followed by a slow increase, while the intensities
detected for the serum bottle samples were almost 6 times higher than
those for the bioreactor samples.

Finally, the concentrations of glycerol-3-phosphate (Fig. 6f)
did not change during the lag phase but increased sharply during
the exponential phase, before finally reaching a period of stability
during the stationary phase under both culturing conditions. This
is of course perhaps not surprising, as glycerol-3-phosphate is one
of the main precursors for the synthesis of triacylglycerides, which
are major lipid components of bacterial cell membranes. There-
fore, the concentration and necessity of this compound are di-
rectly related to the bacterial growth rate, which is in complete
agreement with our GC-MS findings.

Concluding remarks. This study clearly demonstrates the effects
of scale-up on the growth and metabolism of G. sulfurreducens
grown on NBAF with acetate as an electron donor and fumarate as
an electron acceptor in batch culture. It also illustrates some of the
challenges involved with scaling up bioprocesses, which is vital to
underpin biotechnological exploitation of a wide range of micro-
organisms, including Geobacter species. The FTIR findings em-
phasize the advantages of this technique as a rapid, nondestruc-
tive, relatively inexpensive, and high-throughput screening tool
and also reveal its potential for applications in a wide range of
areas, including industrial scale-up. Our GC-MS metabolic pro-
filing results suggested that the limited availability of oxaloacetate,
potentially due to restricted nicotinamide levels and malate dehy-

drogenase activity, could be a significant metabolicbottleneckresult-
ing from this scale-up process. Additional metabolomics experiments
were performed to test this hypothesis. Guided by the hypothesis gener-
ation experiments from GC-MS (shown schematically in Fig. S5 in the
supplemental material), which suggested that cells may be starved of ox-
aloacetate and/or nicotinamide, further cultures were grown that were
supplemented with these metabolic intermediates to test these hypothe-
ses(seeFig.S5).Whilesupplementationwithoxaloacetatehadanegative
effect on growth, when nicotinamide was added at the start of culturing
in the bioreactor, the bacterial lag phase was significantly shorter and at a
level comparable to that detected in the 100-ml serum bottles.
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FIG 8 Comparison of the intensities of significant FTIR vibrations identified
by the PC-DFA loading plot of serum bottle (stars) and bioreactor (circles)
samples during the first 48 h of incubation (see Fig. S2 in the supplemental
material). (a) The 1,655 cm�1 amide I region due to stretching of C�O bonds;
(b) the 1,402 cm�1 region due to symmetric stretching of C�O bonds in
carboxylic acids. Data points represent the mean of the three replicates, with
bars indicating the relative standard deviation. The color bars on the right
represent the duration of the incubation during which samples were collected.
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